Inventiones mathematicae

, Volume 210, Issue 1, pp 231–282 | Cite as

Artin groups of Euclidean type

Article

Abstract

This article resolves several long-standing conjectures about Artin groups of Euclidean type. Specifically we prove that every irreducible Euclidean Artin group is a torsion-free centerless group with a decidable word problem and a finite-dimensional classifying space. We do this by showing that each of these groups is isomorphic to a subgroup of a group with an infinite-type Garside structure. The Garside groups involved are introduced here for the first time. They are constructed by applying semi-standard procedures to crystallographic groups that contain Euclidean Coxeter groups but which need not be generated by the reflections they contain.

Mathematics Subject Classification

20F36 

References

  1. 1.
    Allcock, D.: Braid pictures for Artin groups. Trans. Am. Math. Soc. 354(9), 3455–3474 (2002). (electronic)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Baumeister, B., Dyer, M., Stump, C., Wegener, P.: A note on the transitive Hurwitz action on decompositions of parabolic Coxeter elements. Proc. Am. Math. Soc. Ser. B 1, 149–154 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bessis, D.: The dual braid monoid. Ann. Sci. École Norm. Sup. (4) 36(5), 647–683 (2003)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Birman, J.S.: Braids, Links, and Mapping Class Groups. Princeton University Press, Princeton (1974). Annals of Mathematics Studies, No. 82Google Scholar
  5. 5.
    Brady, T., McCammond, J.P.: Three-generator Artin groups of large type are biautomatic. J. Pure Appl. Algebra 151(1), 1–9 (2000)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Brady, T., McCammond, J.: Braids, posets and orthoschemes. Algebr. Geom. Topol. 10(4), 2277–2314 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Brady, N., McCammond, J.: Factoring Euclidean isometries. Int. J. Algebra Comput. 25(1–2), 325–347 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Brieskorn, E., Saito, K.: Artin-Gruppen und Coxeter-Gruppen. Invent. Math. 17, 245–271 (1972)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Brady, T., Watt, C.: \(K(\pi ,1)\)’s for Artin groups of finite type. In: Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), vol. 94, pp. 225–250 (2002)Google Scholar
  10. 10.
    Charney, R., Meier, J., Whittlesey, K.: Bestvina’s normal form complex and the homology of Garside groups. Geom. Dedic. 105, 171–188 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Charney, R., Peifer, D.: The \(K(\pi,1)\)-conjecture for the affine braid groups. Comment. Math. Helv. 78(3), 584–600 (2003)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dehornoy, P., Digne, F., Michel, J.: Garside families and Garside germs. J. Algebra 380, 109–145 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Dehornoy, P.: Foundations of Garside theory, EMS Tracts in Mathematics, vol. 22, European Mathematical Society (EMS), Zürich, 2015, With François Digne, Eddy Godelle, Daan Krammer and Jean Michel, Contributor name on title page: Daan KramerGoogle Scholar
  14. 14.
    Deligne, P.: Les immeubles des groupes de tresses généralisés. Invent. Math. 17, 273–302 (1972)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Digne, F.: Présentations duales des groupes de tresses de type affine \({\widetilde{A}}\). Comment. Math. Helv. 81(1), 23–47 (2006)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Digne, F.: A Garside presentation for Artin-Tits groups of type \({\widetilde{C}}_n\). Ann. Inst. Fourier (Grenoble) 62(2), 641–666 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Dehornoy, P., Paris, L.: Gaussian groups and Garside groups, two generalisations of Artin groups. Proc. Lond. Math. Soc. (3) 79(3), 569–604 (1999)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, New York (2002)CrossRefMATHGoogle Scholar
  19. 19.
    Godelle, E., Paris, L.: Basic questions on Artin-Tits groups. Configuration spaces, CRM Series, vol. 14, Ed. Norm., Pisa, pp. 299–311 (2012)Google Scholar
  20. 20.
    Humphreys, J.E.: Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  21. 21.
    Igusa, K., Schiffler, R.: Exceptional sequences and clusters. J. Algebra 323(8), 2183–2202 (2010)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kent, R.P. IV, Peifer, D.: A geometric and algebraic description of annular braid groups. Int. J. Algebra Comput. 12(1–2), 85–97 (2002). International Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory (Lincoln, NE, 2000)Google Scholar
  23. 23.
    McCammond, J.: Pulling apart orthogonal groups to find continuous braids, Preprint (2010)Google Scholar
  24. 24.
    McCammond, J.: The structure of Euclidean Artin groups. In: Proceedings of the 2013 Durham Conference on Geometric and Cohomological Group Theory (to appear). arXiv:1312.7781
  25. 25.
    McCammond, J.: Dual Euclidean Artin groups and the failure of the lattice property. J. Algebra 437, 308–343 (2015)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Orellana, R., Ram, A.: Affine braids, Markov traces and the category \({\cal{O}}\). Algebraic groups and homogeneous spaces. Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, pp. 423–473 (2007)Google Scholar
  27. 27.
    Reiner, V.: Non-crossing partitions for classical reflection groups. Discrete Math. 177(1–3), 195–222 (1997)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Salvetti, M.: Topology of the complement of real hyperplanes in \({ C}^N\). Invent. Math. 88(3), 603–618 (1987)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Salvetti, M.: The homotopy type of Artin groups. Math. Res. Lett. 1(5), 565–577 (1994)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Squier, C.C.: On certain \(3\)-generator Artin groups. Trans. Am. Math. Soc. 302(1), 117–124 (1987)MathSciNetMATHGoogle Scholar
  31. 31.
    Stanley, R.P.: Enumerative Combinatorics, vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49. Cambridge University Press, Cambridge (1997). With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 originalGoogle Scholar
  32. 32.
    Sulway, R.: Braided Versions of Crystallographic Groups. Ph.D. thesis, University of California, Santa Barbara (2010)Google Scholar
  33. 33.
    tom Dieck, T.: Categories of rooted cylinder ribbons and their representations. J. Reine Angew. Math. 494, 35–63 (1998). Dedicated to Martin Kneser on the occasion of his 70th birthdayMathSciNetMATHGoogle Scholar
  34. 34.
    van der Lek, H.: Extended Artin groups. Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., vol. 40, Am. Math. Soc., Providence, RI, pp. 117–121 (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaSanta BarbaraUSA
  2. 2.DenverUSA

Personalised recommendations