Skip to main content
Log in

On the Gan–Gross–Prasad conjecture for U(pq)

  • Published:
Inventiones mathematicae Aims and scope

Abstract

In this paper, we give a proof of the Gan–Gross–Prasad conjecture for the discrete series of U(pq). There are three themes in this paper: branching laws of a small \(A_{\mathfrak {q}}(\lambda )\), branching laws of discrete series and inductive construction of discrete series. These themes are linked together by a reciprocity law and the notion of invariant tensor product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Borel, A., Wallach, N.: Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups. Annals of Mathematics Studies. Princeton University Press, Princeton (1980)

  2. Beuzart-Plessis, R.: A local trace formula for the Gan–Gross–Prasad conjecture for unitary groups: the archimedean case. arXiv:1506.01452v2

  3. Dixmier, J.: \(C^*\)-Algebra. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  4. Fell, J.M.G., Doran, R.S.: Representations of \(*\)-Algebras, Locally Compact Groups, and Banach*-Algebraic Bundles. Academic Press, London (1988)

    MATH  Google Scholar 

  5. Gan, W.-T., Gross, B., Prasad, D.: Symplectic local root numbers, central critical L values, and restriction problems in the representation theory of classical groups. Sur les conjectures de Gross et Prasad. I. Asterisque No. 346, 1–109 (2012)

    Google Scholar 

  6. Gan, W.-T., Gerivich, N.: “Restrictions of Saito–Kurokawa representations,” with an appendix by Gordan Savin. Contemp. Math., 488, Automorphic forms and L-functions I. Global aspects, pp. 95–124. American Mathematical Society, Providence (2009)

  7. Gross, B., Prasad, D.: On the decomposition of a representation of \(SO_n\) when restricted to \(SO_{n-1}\). Can. J. Math. 44(5), 974–1002 (1992)

    Article  MATH  Google Scholar 

  8. Gross, B., Wallach, N.: Restriction of small discrete series representations to symmetric subgroups. The mathematical legacy of Harish-Chandra (Baltimore, MD: 255–272, Proceedings of Symposium Pure Mathematics, 68), pp. 255–272. American Mathematical Society, Providence, RI (1998)

  9. He, H.: Theta correspondence I-semistable range: construction and irreducibility. Commun. Contemp. Math. 2, 255–283 (2000)

    MathSciNet  MATH  Google Scholar 

  10. He, H.: Composition of theta correspondences. Adv. Math. 190, 225–263 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, H.: Unitary representations and theta correspondence for type I classical groups. J. Funct. Anal. 199(1), 92–121 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, H.: Unipotent Representations and Quantum Induction (2005). Preprint arXiv:math/0210372

  13. He, H.: Certain Unitary Langlands–Vogan Parameter for Special Orthogonal Groups (2011). Preprint arXiv:1101.0441

  14. Howe, R.: Transcending classical invariant theory. J. Am. Math. Soc. 2, 535–552 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kobayashi, T.: Discrete decomposability of the restriction of \(A_{q}(\lambda )\) with respect to reductive subgroups and its applications. Invent. Math. 117(2), 181–205 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Koyayashi, T.: Branching problems of Zuckerman derived functor modules . In: Representation Theory and Mathematical Physics, pp. 23–40. American Mathematical Society, Providence (2011)

  17. Knapp, A., Vogan, D.: Cohomological Induction and Unitary Representations. Princeton University Press, Princeton (1995)

    Book  MATH  Google Scholar 

  18. Kudla, S.: On the local theta correspondence. Invent. Math. 83, 229–255 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, J.-S.: Singular unitary representation of classical groups. Invent. Math. 97, 237–255 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, J.-S.: Theta lifting for unitary representations with nonzero cohomology. Duke Math. J. 61(3), 913–937 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Paul, A.: Howe correspondence for real unitary groups. J. Funct. Anal. 158, 384–431 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Paul, A.: Howe correspondence for real unitary groups II. Proc. Am. Math. Soc 128(10), 3129–3136 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Paul, A., Trapa, P.: One dimensional representation of \(U(p, q)\) and Howe correspondence. J. Funct. Anal. 195, 129–166 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schmid, W.: Discrete series. Representation theory and automorphic forms. In: Bolton, V. (eds.) Proceedings of Symposium in Pure Mathematics, vol. 61, pp. 83–113. American Mathematical Society, Providence, RI (1997)

  25. Sun, B., Zhu, C.: Multiplicity one theorems: the Archimedean case. Ann. Math. 175(1), (23-44) (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vogan, D.: Unitarizability of certain series of representations. Ann. Math. V 120, 141–187 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vogan, D., Zuckerman, G.: Unitary representations with nonzero cohomology. Compos. Math. 53, 51–90 (1994)

    MathSciNet  MATH  Google Scholar 

  28. Wallach, N.: Real Reudctive Groups I II. Academic Press, San Diego, CA (1992)

    Google Scholar 

  29. Waldspurger, J.-L.: Une formule intgrale reliée á la conjecture locale de Gross–Prasad. Compos. Math. 146(5), 1180–1290 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, W.: Fourier transform and the global Gan–Gross–Prasad conjecture for unitary groups. Ann. Math. 180, 971–1049 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H. On the Gan–Gross–Prasad conjecture for U(pq). Invent. math. 209, 837–884 (2017). https://doi.org/10.1007/s00222-017-0720-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-017-0720-x

Navigation