Skip to main content
Log in

Prime number theorems and holonomies for hyperbolic rational maps

  • Published:
Inventiones mathematicae Aims and scope

Abstract

For a hyperbolic rational map f of degree at least two on the Riemann sphere, we obtain estimates for the number of primitive periodic orbits of f ordered by their multiplier, and establish equidistribution of the associated holonomies, both with power saving error terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bowen, R.: The equidistribution of closed geodesics. Am. J. Math. 94, 413–423 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bowen, R.: Hausdorff dimension of quasi circles. IHES Publ. Math. 50, 11–25 (1979)

    Article  MATH  Google Scholar 

  3. Bowen, R., Ruelle, D.: The ergodic theory of Axiom A flows. Inventiones Math. 29, 181–202 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carleson, L., Gamelin, T.: Complex Dynamics, UTX. Springer, Berlin (1993)

  5. Dolgopyat, D.: On decay of correlations in Anosov flows. Ann. Math. 147, 357–390 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Margulis, G., Mohammaid, A., Oh, H.: Closed geodesics and holonomies for Kleinian manifolds. GAFA 24, 1608–1636 (2014)

    MathSciNet  Google Scholar 

  7. Oh, H., Winter, D.: Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of \(SL_2(\mathbb{Z})\). J. AMS 29, 1069–1115 (2016)

    MATH  Google Scholar 

  8. Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Asterisque 268 (1990)

  9. Pollicott, M., Sharp, R.: Exponential error terms for growth functions on negatively curved surfaces. Am. J. Math. 120, 1019–1042 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Naud, F.: Expanding maps on Cantor sets and analytic continuation of zeta functions. Ann. ENS 38, 116–153 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Ruelle, D.: Repellers for real analytic maps. ETDS 2, 99–107 (1982)

    MathSciNet  MATH  Google Scholar 

  12. Ruelle, D.: The thermodynamic formalism for expanding maps. Commun. Math. Phys. 125, 239–262 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ruelle, D.: An extension of the theory of Fredholm determinants. IHES 72, 175–193 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eremenko, A., Van Strien, S.: Rational maps with real multipliers. Trans. AMS 363, 6453–6463 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Manning, A.: Axiom A diffeomorphisms have rational zeta functions. Bull. LMS 3, 215–222 (1971)

    MathSciNet  MATH  Google Scholar 

  16. McMullen, C.: Complex dynamics and renormalization. Ann. Math. Stud. 135 (1994)

  17. Milnor, J.: Dynamics in one complex variable. Ann. Math. Stud. 160 (1999)

  18. Sullivan, D.: Conformal dynamical systems, Geometric dynamics (Rio de Janeiro, 1981), Lecture Notes in Mathematics, vol. 1007, pp. 725–752. Springer, Berlin (1983)

    Google Scholar 

  19. Zdunik, A.: Parabolic orbifolds and the dimension of the maximal measure for rational maps. Inventiones 99, 627–649 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Winter, D.: In preparation

Download references

Acknowledgments

We would like to thank Dennis Sullivan for bringing our attention to this problem, and Curt McMullen for telling us about Zdunik’s work. We would also like to thank Ralf Spatzier and Mark Pollicott for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee Oh.

Additional information

Supported in parts by the NSF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, H., Winter, D. Prime number theorems and holonomies for hyperbolic rational maps. Invent. math. 208, 401–440 (2017). https://doi.org/10.1007/s00222-016-0693-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-016-0693-1

Navigation