Skip to main content
Log in

The characteristic cycle and the singular support of a constructible sheaf

  • Published:
Inventiones mathematicae Aims and scope

A Correction to this article was published on 03 April 2019

This article has been updated

Abstract

We define the characteristic cycle of an étale sheaf as a cycle on the cotangent bundle of a smooth variety in positive characteristic using the singular support recently defined by Beilinson. We prove a formula à la Milnor for the total dimension of the space of vanishing cycles and an index formula computing the Euler–Poincaré characteristic, generalizing the Grothendieck–Ogg–Shafarevich formula to higher dimension. An essential ingredient of the construction and the proof is a partial generalization to higher dimension of the semi-continuity of the Swan conductor due to Deligne–Laumon. We prove the index formula by establishing certain functorial properties of characteristic cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 03 April 2019

    The first part of Proposition 7.4 and its proof in p. 670-671 should be corrected as follows. The author apologizes for the mistake.

  • 03 April 2019

    The first part of Proposition 7.4 and its proof in p. 670-671 should be corrected as follows. The author apologizes for the mistake.

References

  1. Abbes, A., Saito, T.: Ramification of local fields with imperfect residue fields. Amer. J. Math. 124, 879–920 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abbes, A., Saito, T.: The characteristic class and ramification of an \({\ell }\)-adic étale sheaf. Inv. Math. 168, 567–612 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Artin, M.: Faisceaux constructibles, cohomologie d’une courbe algébrique, SGA 4 Exposé IX. Théorie des Topos et Cohomologie Étale des Schémas, Lecture Notes in Mathematics, vol. 305, pp. 1–42 (1973)

  4. Artin, M.: Théorème de finitude pour un morphisme propre; dimension cohomologique des schémas algébriques affines, SGA 4 Exposé XIV. Théorie des Topos et Cohomologie Étale des Schémas, Lecture Notes in Mathematics, vol. 305, pp. 145–167 (1973)

  5. Artin, M.: Morphismes acycliques, SGA 4 Exposé XV. Théorie des Topos et Cohomologie Étale des Schémas, Lecture Notes in Mathematics, vol. 305, pp. 168–205 (1973)

  6. Artin, M.: Théorème de changement de base par morphisme lisse, SGA 4 Exposé XVI. Théorie des Topos et Cohomologie Étale des Schémas, Lecture Notes in Mathematics, vol. 305, pp. 206–249 (1973)

  7. Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers, Analyse et topologie sur les espaces singuliers (I), Astérisque 100 (1982)

  8. Beilinson, A.: Constructible sheaves are holonomic, to appear at Selecta Mathematica. arXiv:1505.06768

  9. Beilinson, A.: email to K. Kato and T. Saito, 5.12.13

  10. Brylinski, J.L.: Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques. Astérisque 140–141, 3–134 (1986)

    MATH  Google Scholar 

  11. de Jong, A.J.: Smoothness, semi-stability and alterations. Publ. Math. IHES 83, 51–93 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deligne, P.: La formule de dualité globale, Théorie des topos et cohomologie étale des schémas, SGA 4 Exposé XVIII. Springer Lecture Notes in Math. 305, 480–587 (1972)

  13. Deligne, P.: La formule de Milnor, Groupes de Monodromie en Géométrie Algébrique, SGA 7II. Exposé XVI, Springer Lecture Notes in Math. 340, 197–211 (1973)

  14. Deligne, P.: Rapport sur la formule des traces, Cohomologie étale SGA \(4\frac{1}{2}\). Springer, Lecture Notes in Math. 569, 76–109 (1977)

  15. Deligne, P.: Théorèmes de finitude en cohomologie \(\ell \)-adique, Cohomologie étale SGA \(4\frac{1}{2}\). Springer Lecture Notes in Math. 569, 233–251 (1977)

  16. Deligne, P.: Notes sur Euler-Poincaré: brouillon project, 8/2/2011

  17. Fu, L.: Etale cohomology theory, revised edition. Nankai tracts in Math. 14 (2015)

  18. Fulton, W.: Intersection Theory, 2nd edn. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  19. Ginsburg, V.: Characteristic varieties and vanishing cycles. Inv. Math. 84, 327–402 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grothendieck, A.: Éléments de géométrie algébrique IV, Étude locale des schémas et des morphismes de schémas, Publ. Math. IHES 20, 24, 28, 32 (1964-67)

  21. Grothendieck, A.: rédigé par I. Bucur, Formule d’Euler-Poincaré en cohomologie étale, Cohomologie \(\ell \)-adique et Fonction \(L\), SGA 5, Springer Lecture Notes in Math. 589 (1977), 372–406

  22. Grothendieck, A.: rédigé par L. Illusie, Formule de Lefschetz, Exposé III, SGA 5. Springer Lecture Notes in Math. 589, 73–137 (1977)

  23. Grothendieck, A.: Récoltes et Semailles, Réflexions et témoignages sur un passé de mathématicien, http://lipn.univ-paris13.fr/~duchamp/Books&more/Grothendieck/RS/pdf/RetS. Accessed 3 July 2016

  24. Illusie, L.: Appendice à Théorèmes de finitude en cohomologie \(\ell \)-adique, Cohomologie étale SGA 4\(\frac{1}{2}\). Springer Lecture Notes in Math. 569, 252–261 (1977)

  25. Illusie, L.: Autour du théorème de monodromie locale, Périodes \(p\)-adiques. Astérisque 223, 9–57 (1994)

    Google Scholar 

  26. Illusie, L.: Produits orientés. Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents. Astérisque 363–364, 213–234 (2014)

  27. Illusie, L.: Around the Thom–Sebastiani theorem, to appear at Manuscripta Math

  28. Kashiwara, M., Schapira, P.: Sheaves on manifolds, Springer-Verlag, Grundlehren der Math. Wissenschaften, vol. 292. Springer, Berlin (1990)

  29. Kato, K.: Swan conductors with differential values, Advanced studies in pure mathematics 12, 1987 Galois representations and arithmetic algebraic geometry, pp. 315–342

  30. Kato, K., Saito, T.: Ramification theory for varieties over a perfect field. Ann. Math. 168, 33–96 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Laumon, G.: Semi-continuité du conducteur de Swan (d’après P. Deligne), Séminaire E.N.S. (1978–1979) Exposé 9, Astérisque 82–83, 173–219 (1981)

  32. Laumon, G.: Comparaison de caractéristiques d’Euler-Poincaré en cohomologie \(\ell \)-adique. C. R. Acad. Sci. Paris Sér. I Math. 292(3), 209–212 (1981)

    MathSciNet  MATH  Google Scholar 

  33. MacPherson, R.: Chern classes for singular algebraic varieties. Ann. Math. 100, 423–432 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  34. Orgogozo, F.: Modifications et cycles proches sur une base générale. Int. Math. Res. Not. 2006, 1–38 (2006)

  35. Saito, T.: \(\epsilon \)-factor of a tamely ramified sheaf on a variety. Invent. Math. 113, 389–417 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Saito, T.: Wild Ramification and the Cotangent Bundle (accepted for publication at Journal of Algebraic Geometry)

  37. Saito, T.: Characteristic cycle and the Euler number of a constructible sheaf on a surface. Kodaira Centennial issue of the Journal of Mathematical Sciences, the University of Tokyo 22, 387–442 (2015)

  38. Saito, T.: Characteristic cycle of the exterior product of constructible sheaves, arXiv:1607.03157 (preprint)

  39. Serre, J.-P.: Corps Locaux. Hermann, Paris (1968)

    MATH  Google Scholar 

  40. Yang, E.: Logarithmic version of the Milnor formula (accepted for publication at Asian Journal of Mathematics)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Saito.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, T. The characteristic cycle and the singular support of a constructible sheaf. Invent. math. 207, 597–695 (2017). https://doi.org/10.1007/s00222-016-0675-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-016-0675-3

Navigation