Inventiones mathematicae

, Volume 206, Issue 3, pp 705–799 | Cite as

The Gross–Prasad conjecture and local theta correspondence

  • Wee Teck Gan
  • Atsushi IchinoEmail author


We establish the Fourier–Jacobi case of the local Gross–Prasad conjecture for unitary groups, by using local theta correspondence to relate the Fourier–Jacobi case with the Bessel case established by Beuzart-Plessis. To achieve this, we prove two conjectures of Prasad on the precise description of the local theta correspondence for (almost) equal rank unitary dual pairs in terms of the local Langlands correspondence. The proof uses Arthur’s multiplicity formula and thus is one of the first examples of a concrete application of this “global reciprocity law”.

Mathematics Subject Classification

11F70 22E50 



We would like to thank Tasho Kaletha for useful discussions. W. T. Gan is partially supported by a Singapore government MOE Tier 2 Grant R-146-000-175-112. A. Ichino is partially supported by JSPS Grant-in-Aid for Scientific Research (B) 26287003. This material is based upon work supported by the National Science Foundation under Grant No. 0932078 000 while the authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2014 semester.


  1. 1.
    Aizenbud, A., Gourevitch, D., Rallis, S., Schiffmann, G.: Multiplicity one theorems. Ann. Math. 172, 1407–1434 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arthur, J.: The endoscopic classification of representations: orthogonal and symplectic groups. In: Colloquium Publications, vol. 61. American Mathematical Society, New York (2013)Google Scholar
  3. 3.
    Bernstein, J.N.: Le “centre” de Bernstein, Travaux en Cours. In: Representations of Reductive Groups over a Local Field, pp. 1–32, Hermann (1984)Google Scholar
  4. 4.
    Beuzart-Plessis, R.: Expression d’un facteur epsilon de paire par une formule intégrale. Can. J. Math. 66, 993–1049 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Beuzart-Plessis, R.: Endoscopie et conjecture raffinée de Gan–Gross–Prasad pour les groupes unitaires. Compos. Math. 151, 1309–1371 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Beuzart-Plessis, R.: La conjecture locale de Gross–Prasad pour les représentations tempérées des groupes unitaires. Mém. Soc. Math. Fr. (to appear)Google Scholar
  7. 7.
    Casselman, W., Shalika, J.: The unramified principal series of \(p\)-adic groups. II. The Whittaker function. Compos. Math. 41, 207–231 (1980)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Chaudouard, P.-H., Laumon, G.: Le lemme fondamental pondéré. II. Énoncés cohomologiques. Ann. Math. 176, 1647–1781 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Clozel, L.: On the cohomology of Kottwitz’s arithmetic varieties. Duke Math. J. 72, 757–795 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cogdell, J.W., Kim, H.H., Piatetski-Shapiro, I.I., Shahidi, F.: On lifting from classical groups to \({\rm GL}_N\). Publ. Math. Inst. Hautes Études Sci. 93, 5–30 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cogdell, J.W., Kim, H.H., Piatetski-Shapiro, I.I., Shahidi, F.: Functoriality for the classical groups. Publ. Math. Inst. Hautes Études Sci. 99, 163–233 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cogdell, J.W., Piatetski-Shapiro, I.I., Shahidi, F.: Partial Bessel functions for quasi-split groups. Automorphic representations, \(L\)-functions and applications: progress and prospects. In: Ohio State University Mathematical Research Institute Publication, vol. 11, pp. 95–128. de Gruyter, New York (2005)Google Scholar
  13. 13.
    Cogdell, J.W., Piatetski-Shapiro, I.I., Shahidi, F.: Functoriality for the quasisplit classical groups. On certain \(L\)-functions. Clay Math. Proc. 13, 117–140 (2011) (American Mathematical Society)Google Scholar
  14. 14.
    Deligne, P.: Les constantes des équations fonctionnelles des fonctions \(L\). Modular functions of one variable, II. Lect. Notes Math. 349, 501–597 (1973) (Springer)Google Scholar
  15. 15.
    Gan, W.T., Gross, B.H., Prasad, D.: Symplectic local root numbers, central critical \(L\)-values, and restriction problems in the representation theory of classical groups. Astérisque 346, 1–109 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Gan, W.T., Gross, B.H., Prasad, D.: Restrictions of representations of classical groups: examples. Astérisque 346, 111–170 (2012)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gan, W.T., Ichino, A.: Formal degrees and local theta correspondence. Invent. Math. 195, 509–672 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gan, W.T., Qiu, Y., Takeda, S.: The regularized Siegel–Weil formula (the second term identity) and the Rallis inner product formula. Invent. Math. 198, 739–831 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gan, W.T., Savin, G.: Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence. Compos. Math. 148, 1655–1694 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gan, W.T., Takeda, S.: On the Howe duality conjecture in classical theta correspondence. In: Contemporary Mathematics. Advances in the Theory of Automorphic Forms and Their \(L\)-Functions, vol. 664, pp. 105–117. American Mathematical Society, Province, RI (2016)Google Scholar
  21. 21.
    Gan, W.T., Takeda, S.: A proof of the Howe duality conjecture. J. Am. Math. Soc. 29, 473–493 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Godement, R., Jacquet, H.: Zeta functions of simple algebras. Lect. Notes Math. 260 (1972) (Springer)Google Scholar
  23. 23.
    Gross, B.H., Prasad, D.: On the decomposition of a representation of \({\rm SO}_n\) when restricted to \({\rm SO}_{n-1}\). Can. J. Math. 44, 974–1002 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gross, B.H., Prasad, D.: On irreducible representations of \({\rm SO}_{2n+1} \times {\rm SO}_{2m}\). Can. J. Math. 46, 930–950 (1994)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Harris, M., Kudla, S.S., Sweet Jr., W.J.: Theta dichotomy for unitary groups. J. Am. Math. Soc. 9, 941–1004 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Harris, M., Taylor, R.: The geometry and cohomology of some simple Shimura varieties. Ann. Math. Stud. 151 (2001) (Princeton University Press)Google Scholar
  27. 27.
    Heiermann, V.: A note on standard modules and Vogan \(L\)-packets. Manuscr. Math. (to appear)Google Scholar
  28. 28.
    Heiermann, V., Muić, G.: On the standard modules conjecture. Math. Z. 255, 847–853 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Henniart, G.: Une preuve simple des conjectures de Langlands pour \({\rm GL}{(n)}\) sur un corps \(p\)-adique. Invent. Math. 139, 439–455 (2000)Google Scholar
  30. 30.
    Henniart, G.: Correspondance de Langlands et fonctions \(L\) des carrés extérieur et symétrique. Int. Math. Res. Not., 633–673 (2010)Google Scholar
  31. 31.
    Ichino, A.: On the local theta correspondence and \(R\)-groups. Compos. Math. 140, 301–316 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Kaletha, T.: Genericity and contragredience in the local Langlands correspondence. Algebra Number Theory 7, 2447–2474 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Kaletha, T., Mínguez, A., Shin, S.W., White, P.-J.: Endoscopic classification of representations: inner forms of unitary groups. arXiv:1409.3731
  34. 34.
    Kim, H.H., Krishnamurthy, M.: Base change lift for odd unitary groups. Functional analysis VIII. Various Publ. Ser. (Aarhus) 47, 116–125 (2004) (Aarhus University)Google Scholar
  35. 35.
    Kim, H.H., Krishnamurthy, M.: Stable base change lift from unitary groups to \({\rm GL}_n\). Int. Math. Res. Pap., 1–52 (2005)Google Scholar
  36. 36.
    Kudla, S.S.: On the local theta-correspondence. Invent. Math. 83, 229–255 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Kudla, S.S.: Splitting metaplectic covers of dual reductive pairs. Israel J. Math. 87, 361–401 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Langlands, R.P.: On the functional equations satisfied by Eisenstein series. In: Lecture Notes in Mathematics, vol. 544. Springer, New York (1976)Google Scholar
  39. 39.
    Langlands, R.P., Shelstad, D.: On the definition of transfer factors. Math. Ann. 278, 219–271 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Lapid, E.M., Rallis, S.: On the local factors of representations of classical groups. Automorphic representations, \(L\)-functions and applications: progress and prospects. In: Ohio State University Mathematical Research Institute Publication, vol. 11, pp. 309–359. de Gruyter, New York (2005)Google Scholar
  41. 41.
    Mœglin, C.: Conjecture d’Adams pour la correspondance de Howe et filtration de Kudla. Arithmetic geometry and automorphic forms. Adv. Lect. Math. 19, 445–503 (2011) (International Press)Google Scholar
  42. 42.
    Mœglin, C., Waldspurger, J.-L.: La conjecture locale de Gross–Prasad pour les groupes spéciaux orthogonaux: le cas général. Astérisque 347, 167–216 (2012)Google Scholar
  43. 43.
    Mœglin, C., Waldspurger, J.-L.: Stabilisation de la Formule des Traces Tordue. Progress in Mathematics, vol. 316/317. Birkhäuser, Basel (to appear)Google Scholar
  44. 44.
    Mok, C.P.: Endoscopic classification of representations of quasi-split unitary groups. Mem. Am. Math. Soc. 235, 1108 (2015)Google Scholar
  45. 45.
    Muić, G.: On the structure of theta lifts of discrete series for dual pairs \(({{\rm Sp}}(n),{{\rm O}}(V))\). Israel J. Math. 164, 87–124 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Piatetski-Shapiro, I.I., Rallis, S.: \(L\)-functions for the classical groups. Explicit constructions of automorphic \(L\)-functions. In: Lecture Notes in Mathematics, vol. 1254, pp. 1–52. Springer, New York (1987)Google Scholar
  47. 47.
    Prasad, D.: On the local Howe duality correspondence. Int. Math. Res. Not., 279–287 (1993)Google Scholar
  48. 48.
    Prasad, D.: Theta correspondence for unitary groups. Pac. J. Math. 194, 427–438 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Ranga Rao, R.: On some explicit formulas in the theory of Weil representation. Pac. J. Math. 157, 335–371 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Rodier, F.: Whittaker models for admissible representations of reductive \(p\)-adic split groups. Harmonic analysis on homogeneous spaces. In: Proceedings of the Symposium on Pure Mathematics, vol. 26, pp. 425–430. American Mathematical Society, New York (1973)Google Scholar
  51. 51.
    Scholze, P.: The local Langlands correspondence for \({{\rm GL}}_n\) over \(p\)-adic fields. Invent. Math. 192, 663–715 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Shahidi, F.: On certain \(L\)-functions. Am. J. Math. 103, 297–355 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Shahidi, F.: A proof of Langlands’ conjecture on Plancherel measures; complementary series for \(p\)-adic groups. Ann. Math. 132, 273–330 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Shahidi, F.: Local coefficients as Mellin transforms of Bessel functions: towards a general stability. Int. Math. Res. Not., 2075–2119 (2002)Google Scholar
  55. 55.
    Shin, S.W.: Automorphic Plancherel density theorem. Israel J. Math. 192, 83–120 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Sun, B.: Multiplicity one theorems for Fourier-Jacobi models. Am. J. Math. 134, 1655–1678 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Sun, B., Zhu, C.-B.: Conservation relations for local theta correspondence. J. Am. Math. Soc. 28, 939–983 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Vogan Jr, D.A.: The local Langlands conjecture. Representation theory of groups and algebras. Contemp. Math. 145, 305–379 (1993) (American Mathematical Society)Google Scholar
  59. 59.
    Waldspurger, J.-L.: Démonstration d’une conjecture de dualité de Howe dans le cas \(p\)-adique, \(p \ne 2\). Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I. In: Israel Mathematical Conference Proceedings, vol. 2, pp. 267–324. Weizmann, Rehovot (1990)Google Scholar
  60. 60.
    Waldspurger, J.-L.: La formule de Plancherel pour les groupes \(p\)-adiques (d’après Harish-Chandra). J. Inst. Math. Jussieu 2, 235–333 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Waldspurger, J.-L.: Une formule intégrale reliée à la conjecture locale de Gross–Prasad. Compos. Math. 146, 1180–1290 (2010)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Waldspurger, J.-L.: Une formule intégrale reliée à la conjecture locale de Gross–Prasad, 2ème partie: extension aux représentations tempérées. Astérisque 346, 171–312 (2012)Google Scholar
  63. 63.
    Waldspurger, J.-L.: Calcul d’une valeur d’un facteur \(\epsilon \) par une formule intégrale. Astérisque 347, 1–102 (2012)Google Scholar
  64. 64.
    Waldspurger, J.-L.: La conjecture locale de Gross–Prasad pour les représentations tempérées des groupes spéciaux orthogonaux. Astérisque 347, 103–165 (2012)Google Scholar
  65. 65.
    Wallach, N.R.: On the constant term of a square integrable automorphic form. Operator algebras and group representations, vol. II. In: Monographic Studies in Mathematics, vol. 18, pp. 227–237. Pitman, New York (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsNational University of SingaporeSingaporeSingapore
  2. 2.Department of MathematicsKyoto UniversityKyotoJapan

Personalised recommendations