Skip to main content

Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces

Abstract

This paper is motivated by the characterization of the optimal symmetry breaking region in Caffarelli-Kohn-Nirenberg inequalities. As a consequence, optimal functions and sharp constants are computed in the symmetry region. The result solves a longstanding conjecture on the optimal symmetry range. As a byproduct of our method we obtain sharp estimates for the principal eigenvalue of Schrödinger operators on some non-flat non-compact manifolds, which to the best of our knowledge are new. The method relies on generalized entropy functionals for nonlinear diffusion equations. It opens a new area of research for approaches related to carré du champ methods on non-compact manifolds. However, key estimates depend as much on curvature properties as on purely nonlinear effects. The method is well adapted to functional inequalities involving simple weights and also applies to general cylinders. Beyond results on symmetry and symmetry breaking, and on optimal constants in functional inequalities, rigidity theorems for nonlinear elliptic equations can be deduced in rather general settings.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11(4), 573–598 (1976)

    MathSciNet  MATH  Google Scholar 

  2. Bakry, D., Émery, M.: Hypercontractivité de semi-groupes de diffusion. C. R. Acad. Sci. Paris Sér. I Math. 299(15), 775–778 (1984)

    MATH  Google Scholar 

  3. Bakry, D., Émery, M.: Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., vol. 1123, pp. 177–206. Springer, Berlin (1985)

  4. Bakry, D., Gentil, I., Ledoux, M.: Analysis and geometry of Markov diffusion operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 348. Springer, Cham (2014)

    MATH  Google Scholar 

  5. Bakry, D., Ledoux, M.: Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator. Duke Math. J. 85(1), 253–270 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Betta, M.F., Brock, F., Mercaldo, A., Posteraro, M.R.: A weighted isoperimetric inequality and applications to symmetrization. J. Inequal. Appl. 4(3), 215–240 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Bidaut-Véron, M.F., Véron, L.: Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations. Invent. Math. 106(3), 489–539 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compos. Math. 53(3), 259–275 (1984)

    MathSciNet  MATH  Google Scholar 

  9. Carlen, E.A., Carrillo, J.A., Loss, M.: Hardy-Littlewood-Sobolev inequalities via fast diffusion flows. Proc. Natl. Acad. Sci. USA 107(46), 19696–19701 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carrillo, J.A., Toscani, G.: Asymptotic \({\rm L}^1\)-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. Math. J. 49(1), 113–142 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carrillo, J.A., Vázquez, J.L.: Fine asymptotics for fast diffusion equations. Comm. Partial Differ. Equations 28(5–6), 1023–1056 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Catrina, F., Wang, Z.-Q.: On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions. Comm. Pure Appl. Math. 54(2), 229–258 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Catto, I., Lions, P.-L.: Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. III. Binding of neutral subsystems. Comm. Partial Differ. Equations 18(3–4), 381–429 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chou, K.S., Chu, C.W.: On the best constant for a weighted Sobolev-Hardy inequality. J. Lond. Math. Soc. 48(1), 137–151 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Del Pino, M., Dolbeault, J.: Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81(9), 847–875 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Demange, J.: Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature. J. Funct. Anal. 254(3), 593–611 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dolbeault, J., Esteban, M.J.: About existence, symmetry and symmetry breaking for extremal functions of some interpolation functional inequalities. In: Holden, H., Karlsen, K.H. (eds.) Nonlinear partial differential equations. Abel Symposia, vol. 7, pp. 117–130. Springer, Berlin, Heidelberg (2012)

  18. Dolbeault, J., Esteban, M.J.: A scenario for symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. J. Numer. Math. 20(3–4), 233–249 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Dolbeault, J., Esteban, M.J.: Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations. Nonlinearity 27(3), 435 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dolbeault, J., Esteban, M.J., Filippas, S., Tertikas, A.: Rigidity results with applications to best constants and symmetry of Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities. Calc. Var. Partial Differ. Equations 54(3), 2465–2481 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dolbeault, J., Esteban, M.J., Kowalczyk, M., Loss, M.: Improved interpolation inequalities on the sphere. Discrete Contin. Dyn. Syst. Ser. S (DCDS-S) 7(4), 695–724 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dolbeault, J., Esteban, M.J., Laptev, A.: Spectral estimates on the sphere. Anal. PDE 7(2), 435–460 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dolbeault, J., Esteban, M.J., Laptev, A., Loss, M.: Spectral properties of Schrödinger operators on compact manifolds: rigidity, flows, interpolation and spectral estimates. Comptes Rendus Math. 351(11–12), 437–440 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dolbeault, J., Esteban, M.J., Loss, M.: Symmetry of extremals of functional inequalities via spectral estimates for linear operators, J. Math. Phys. 53, 095204 (2012)

  25. Dolbeault, J., Esteban, M.J., Loss, M.: Nonlinear flows and rigidity results on compact manifolds. J. Funct. Anal. 267(5), 1338–1363 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dolbeault, J., Esteban, M.J., Loss, M.: Keller-Lieb-Thirring inequalities for Schrödinger operators on cylinders. Comptes Rendus Math. 353(9), 813–818 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dolbeault, J., Esteban, M.J., Loss, M., Tarantello, G.: On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities. Adv. Nonlinear Stud. 9(4), 713–726 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Dolbeault, J., Esteban, M.J., Tarantello, G.: The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions. Ann. Sci. Norm. Super. Pisa Cl. Sci. 7(2), 313–341 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Dolbeault, J., Toscani, G.: Nonlinear diffusions: extremal properties of Barenblatt profiles, best matching and delays. Nonlinear analysis: theory, methods & applications (2016). doi:10.1016/j.na.2015.11.012

  30. Felli, V., Schneider, M.: Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type. J. Differ. Equations 191(1), 121–142 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math. 34(4), 525–598 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in mathematics. Springer, Berlin (2001) (reprint of the 1998 edition)

  33. Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math. 97(4), 1061–1083 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  34. Herrero, M.A., Pierre, M.: The Cauchy problem for \(u_t=\Delta u^m\) when \(0 < m < 1\). Trans. Am. Math. Soc. 291(1), 145–158 (1985)

  35. Horiuchi, T.: Best constant in weighted Sobolev inequality with weights being powers of distance from the origin. J. Inequal. Appl. 1(3), 275–292 (1997)

    MathSciNet  MATH  Google Scholar 

  36. Keller, J.B.: Lower bounds and isoperimetric inequalities for eigenvalues of the Schrödinger equation. J. Math. Phys. 2, 262–266 (1961)

    Article  MATH  Google Scholar 

  37. Licois, J.R., Véron, L.: Un théorème d’annulation pour des équations elliptiques non linéaires sur des variétés riemanniennes compactes. C. R. Acad. Sci. Paris Sér. I Math. 320(11), 1337–1342 (1995)

    MATH  Google Scholar 

  38. Licois, J.R., Véron, L.: A class of nonlinear conservative elliptic equations in cylinders. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26(2), 249–283 (1998)

    MathSciNet  MATH  Google Scholar 

  39. Lieb, E.H.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. Math. 118(2), 349–374 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lieb, E.H., Thirring, W.E.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In: Lieb, E., Simon, B., Wightman, A. (eds.) Essays in Honor of Valentine Bargmann, pp. 269–303. Princeton University Press (1976)

  41. Lin, C.S., Wang, Z.Q.: Symmetry of extremal functions for the Caffarelli-Kohn-Nirenberg inequalities. Proc. Am. Math. Soc. 132(6), 1685–1691 (2004)

    Article  MATH  Google Scholar 

  42. Lin, C.S., Wang, Z.Q.: Erratum to: “Symmetry of extremal functions for the Caffarelli-Kohn-Nirenberg inequalities”. Proc. Am. Math. Soc. 132(7), 1685–1691 (2004)

  43. Savaré, G., Toscani, G.: The concavity of Rényi entropy power. IEEE Trans. Inform. Theory 60(5), 2687–2693 (2014)

    Article  MathSciNet  Google Scholar 

  44. Smets, D., Willem, M.: Partial symmetry and asymptotic behavior for some elliptic variational problems. Calc. Var. Partial Differ. Equations 18(1), 57–75 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  46. Vázquez, J.L.: Asymptotic behaviour for the porous medium equation posed in the whole space, Nonlinear Evolution Equations and Related Topics. Springer, New York (2004)

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Projects STAB and Kibord (J.D.) of the French National Research Agency (ANR). M.L. has been partially supported by the NSF Grant DMS-1301555. The authors thank the referees for their careful reading of the paper.

\(\copyright \) 2016 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria J. Esteban.

Appendix: Regularity and decay estimates

Appendix: Regularity and decay estimates

We denote by \('\) and \(\nabla \) the differentiation with respect to s and \(\omega \) respectively. We work in the general setting and do not assume that \(\mathfrak M={\mathbb {S}}^{d-1}\).

Proposition 8.1

Any positive solution \(\varphi \in {\mathrm {H}}^1({\mathcal {C}})\) of (1.7) with \(p\in (2, 2^*)\) is uniformly bounded and smooth. Moreover there are two positive constants, \(C_1\) and \(C_2\) such that, for all \((s,\omega )\in {\mathcal {C}}\),

$$\begin{aligned}&C_1\,e^{-\sqrt{\Lambda }\,|s|}\le \varphi (s,\omega )\le C_2\,e^{-\sqrt{\Lambda }\,|s|},\\&|\varphi '(s,\omega )|, |\varphi ''(s,\omega )|, |\nabla \varphi (s,\omega )|, |\nabla \varphi '(s,\omega )|, |\Delta \,\varphi (s,\omega )|\le C_2\,e^{-\sqrt{\Lambda }\,|s|}. \end{aligned}$$

Proof

A similar result was proved in [13]. Here we work in a more general setting when \(\mathfrak M\ne {\mathbb {S}}^{d-1}\). For sake of completeness, we sketch the main steps of the proof.

Step 1. The solution is bounded, smooth and \(\lim _{|s|\rightarrow +\infty }\varphi (s,\omega )=0\) for any \(\omega \in \mathfrak M\). Boundedness is obtained by a Moser iteration scheme. The \(C^\infty \) regularity follows by a localized boot-strap argument based on, e.g., [32, Corollary 7.11, Theorem 8.10, and Corollary 8.11]. If \(s\mapsto \chi (s)\) is a smooth truncation function such that \(0\le \chi \le 1\), \(\chi \equiv 1\) if \(|s|\le 1\) and \(\chi \equiv 0\) if \(|s|\ge 2\), then \(\varphi _\varepsilon (s,\omega ):=\varphi (s,\omega )\,\big (1-\chi (\varepsilon \,s)\big )\) has an arbitrary small norm in \({\mathrm {H}}^1({\mathcal {C}})\) and \(\lim _{\varepsilon \rightarrow 0_+}\Vert {\varphi _\varepsilon }\Vert _{{\mathrm {L}}^{\infty }({\mathcal {C}})}=0\), again by a Moser iteration scheme.

Step 2. Exponential decay of \(\varphi \) in |s|. For any \(\mu \in (0,\sqrt{\Lambda })\), let \(h(s):=e^{-\mu \,|s|}\) and define

$$\begin{aligned} s_\mu :=\inf \left\{ s>0\,:\,|\varphi (\sigma ,\omega )|^{p-2}<\Lambda -\mu ^2\quad \forall \,(\sigma ,\omega )\in {\mathcal {C}}\cap \{|\sigma |>s\}\right\} . \end{aligned}$$

By the Strong Maximum Principle applied to the function \((h-\varphi )\) which solves

$$\begin{aligned} -\,\partial ^2_s\,(h-\varphi )-\Delta \,(h-\varphi )+\mu ^2\,(h-\varphi )\ge \left( \Lambda -\mu ^2-|\varphi |^{p-2}\right) \,\varphi \ge 0 \end{aligned}$$

for \(|s| \ge s_\mu \), we get the estimate

$$\begin{aligned} 0<\varphi \le \Vert {\varphi }\Vert _{{\mathrm {L}}^{\infty }({\mathcal {C}})}\,e^{-\mu \,(|s|-s_\mu )}\quad \forall \,(s,\omega )\in {\mathcal {C}}\cap \{|s|>s_\mu \}. \end{aligned}$$

Step 3. Optimal exponential decay of \(\varphi \) in |s|. The function \(h_1(s,\omega ):=e^{-\sqrt{\Lambda }\,|s|}\) satisfies the equation \(-\,\Delta \,h_1+\Lambda \,h_1=0\) on \({\mathcal {C}}\cap \{|s|>1\}\). Hence, by the Strong Maximum Principle, we have

$$\begin{aligned} \varphi (s,\omega )\ge \left( \min _{{\mathcal {C}}\cap \{|s|\le 1\}}\varphi \right) \,e^{-\sqrt{\Lambda }\,(|s|-1)}. \end{aligned}$$

From Step 2 we know that for some positive M and \(\bar{s}\), we have

$$\begin{aligned}\textstyle -\,\partial ^2_s\,\varphi -\Delta \,\varphi +\left( \Lambda -\frac{M}{s^2}\right) \varphi \le 0\quad \text{ in }\quad {\mathcal {C}}\cap \{|s|>\bar{s}\}, \end{aligned}$$

while the function \(h_2(s,\omega ):=e^{-\sqrt{\Lambda }\,|s|}\,e^{\frac{\lambda }{|s|}}\) satisfies

$$\begin{aligned} -\,\partial ^2_s\,h_2-\Delta \,h_2+\left( \Lambda -\frac{M}{s^2}\right) h_2=-\frac{1}{s^2}\left( M+2\,\lambda \,\sqrt{\Lambda }+\frac{2\,\lambda }{s}+\frac{\lambda }{s^2}\right) h_2\quad \text{ in }\quad {\mathcal {C}}\cap \{|s|>\bar{s}\}. \end{aligned}$$

By taking \(\lambda <-\frac{M}{2\sqrt{\Lambda }}\) and applying the Strong Maximum Principle for \(S>0\) large enough, we obtain

$$\begin{aligned} 0<\varphi \le \Vert \varphi \Vert _{L^\infty ({\mathcal {C}})}\,e^{-\frac{\lambda }{S}}\,e^{-\sqrt{\Lambda }\,(|s|-S)}\quad \text{ in }\quad {\mathcal {C}}\cap \{|s|>S\}. \end{aligned}$$

Step 4. Optimal exponential decay in |s| for \(\nabla \varphi \), \(\Delta \,\varphi \). Using local charts and [32, Theorem 8.32, p. 210] on local \(C^{1,\alpha }\) estimates, all first derivatives of \(\varphi \) converge to 0 with rate \(e^{-\sqrt{\Lambda }\,|s|}\) as \(|s|\rightarrow +\infty \). [32, Theorem 8.10, p. 186] provides local \({\mathrm {W}}^{k+2,2}\) estimates of the order \(e^{-\sqrt{\Lambda }\,|s|}\) for |s| large enough. The result follows from [32, Corollary 7.11, Theorem 8.10, and Corollary 8.11] if k is taken large enough. \(\square \)

Next we rephrase the results of Proposition 8.1 in the language of the pressure function \({\mathsf {p}}\) of Sect. 4 using (6.1) and establish the estimates needed in Lemmas 4.3 and 6.1.

Proposition 8.2

Let \(m=1-1/n\) and \(\varphi \in {\mathrm {H}}^1({\mathcal {C}})\) be a positive solution of (1.9) with \(p\in (2, 2^*)\). Then the functions \({\mathsf {p}}\) associated with \(\varphi \) according to (6.1) are such that \({\mathsf {p}}''\), \({\mathsf {p}}'/r\), \({\mathsf {p}}/r^2\), \(\nabla {\mathsf {p}}'/r\), \(\nabla {\mathsf {p}}/r^2\) and \(\Delta {\mathsf {p}}/r^2\) are bounded as \(r\rightarrow +\infty \) and of class \(C^\infty \) on \((0,\infty )\times \mathfrak M\). Moreover, if \(\alpha \le \alpha _\mathrm{FS}\), as \(r\rightarrow 0_+\), we have

  1. (i)

    \(\int _{\mathfrak M}{|{\mathsf {p}}'(r,\omega )|^2}\,dv_g\le O(1)\),

  2. (ii)

    \(\int _{\mathfrak M}{|\nabla {\mathsf {p}}(r,\omega )|^2}\,dv_g\le O(r^2)\),

  3. (iii)

    \(\int _{\mathfrak M}{|{\mathsf {p}}''(r,\omega )|^2}\,dv_g\le O(1/r^2)\),

  4. (iv)

    \(\int _{\mathfrak M}{\left| \nabla {\mathsf {p}}'(r,\omega )-\tfrac{1}{r}\,\nabla {\mathsf {p}}(r,\omega )\right| ^2}\,dv_g\le O(1)\),

  5. (v)

    \(\int _{\mathfrak M}{\left| \Delta {\mathsf {p}}(r,\omega )\right| ^2}\,dv_g\le O(1/r^2)\).

Moreover, with the notations defined by (4.8) and (6.3),

$$\begin{aligned} \lim _{r\rightarrow 0_+}{\mathsf {b}}(r)=0=\lim _{r\rightarrow +\infty }{\mathsf {b}}(r) \end{aligned}$$

and

$$\begin{aligned} \lim _{r\rightarrow 0_+}{\mathsf {c}}(r)=0=\lim _{r\rightarrow +\infty }{\mathsf {c}}(r). \end{aligned}$$

Proof

We say that \(f(s,\omega )\sim g(s,\omega )\) as \(s\rightarrow +\infty \) (resp. \(s\rightarrow -\infty \)) if the ratio f / g is bounded from above and from below by positive constants, independent of \(\omega \), and for s (resp. \(-s\)) large enough.

There are some easy consequences of the change of variables (6.1) and of Proposition 8.1: since \(\varphi (s,\omega )\sim e^{\sqrt{\Lambda }\,s}\) as \(s\rightarrow -\infty \), \(\varphi (-\log r/\alpha ,\omega )\sim r^{-2/(p-2)}\) as \(r\rightarrow +\infty \) and it is straightforward to check that \({\mathsf {p}}''\), \({\mathsf {p}}'/r\), \({\mathsf {p}}/r^2\), \(\nabla {\mathsf {p}}'/r\) and \(\nabla {\mathsf {p}}/r^2\) are bounded as \(r\rightarrow +\infty \). As a consequence, we obtain that

$$\begin{aligned} |{\mathsf {b}}(r)|, \quad {\mathsf {c}}(r)\le O\left( r^{2-n}\right) \rightarrow 0\quad \text{ as }\quad r\rightarrow +\infty \end{aligned}$$

because, by assumption, we know that \(n>d\ge 2\).

To complete the proof, one has to establish that \(\lim _{r\rightarrow 0_+}{\mathsf {b}}(r)=\lim _{r\rightarrow 0_+}{\mathsf {c}}(r)=0\). A convenient method for that relies on the Kelvin transformation. Let

$$\begin{aligned} u(r,\omega )=r^{-2n}\,\widetilde{u}(R,\omega )\quad \text{ and }\quad {\mathsf {p}}(r,\omega )=r^2\,\widetilde{{\mathsf {p}}}(R,\omega ) \end{aligned}$$

with \(R=1/r\). It is a remarkable fact to observe that \(\widetilde{u}\) solves the same equation as u, which can be easily seen after applying the Emden-Fowler transformation \(w(r,\omega )=r^{2-n}\,\widetilde{w}(R,\omega )\) to the function w such that \(u(r,\omega )=|w(r,\omega )|^\frac{2\,n}{n-2}\). With evident notations if \(\varphi \) and \(\widetilde{\varphi }\) are given in terms of w and \(\widetilde{w}\) by (1.5), then \(\widetilde{\varphi }(s,\omega )=\varphi (-s,\omega )\) for any \((s,\omega )\in {\mathbb {R}}\times \mathfrak M\) and it is clear that Eq. (1.9) is invariant under the transformation \(s\mapsto -\,s\).

According to Proposition 8.1, \({\mathsf {p}}(r,\omega )=r^2\,\widetilde{{\mathsf {p}}}(1/r,\omega )\) is bounded away from 0 and from infinity, and, uniformly in \(\omega \),

$$\begin{aligned}&|{\mathsf {p}}'(r,\omega )|=|2\,r\,\widetilde{{\mathsf {p}}}\left( \tfrac{1}{r},\omega \right) -\widetilde{{\mathsf {p}}}'\left( \tfrac{1}{r},\omega \right) |\le O\left( \frac{1}{r}\left( \sqrt{\Lambda }-\frac{\widetilde{\varphi }'(s,\omega )}{\widetilde{\varphi }(s,\omega )}\right) \right) ,\\&\tfrac{1}{r}\,|\nabla {\mathsf {p}}(r,\omega )|=r\,|\nabla \,\widetilde{{\mathsf {p}}}\left( \tfrac{1}{r},\omega \right) |\le O\left( \frac{1}{r}\,\frac{\nabla \widetilde{\varphi }(s,\omega )}{\widetilde{\varphi }(s,\omega )}\right) , \end{aligned}$$

which are of order at most 1 / r. Moreover, also uniformly in \(\omega \),

$$\begin{aligned}&|{\mathsf {p}}''(r,\omega )| = \left| 2\,\widetilde{{\mathsf {p}}}\left( \tfrac{1}{r},\omega \right) -\frac{2}{r}\,\widetilde{{\mathsf {p}}}'\left( \tfrac{1}{r},\omega \right) +\frac{1}{r^2}\,\widetilde{{\mathsf {p}}}''\left( \tfrac{1}{r},\omega \right) \right| \\&\qquad \qquad \quad \;\le O\left( \frac{1}{r^2}\left( \frac{\widetilde{\varphi }''(s,\omega )}{\widetilde{\varphi }(s,\omega )}-\,\frac{p}{2}\,\frac{|\widetilde{\varphi }'(s,\omega )|^2}{|\widetilde{\varphi }(s,\omega )|^2}+\,\alpha \,\frac{\widetilde{\varphi }'(s,\omega )}{\widetilde{\varphi }(s,\omega )}\right) \right) ,\\&\left| \tfrac{1}{r}\,\nabla {\mathsf {p}}'(r,\omega )-\tfrac{1}{r^2}\,\nabla {\mathsf {p}}(r,\omega )|=|\nabla \,\widetilde{{\mathsf {p}}}\left( \tfrac{1}{r},\omega \right) -\tfrac{1}{r}\,\nabla \,\widetilde{{\mathsf {p}}}'\left( \tfrac{1}{r},\omega \right) \right| \\&\quad \le O\left( \frac{1}{r^2}\left( \frac{p}{2}\,\frac{\widetilde{\varphi }'(s,\omega )\,\nabla \widetilde{\varphi }(s,\omega )}{|\widetilde{\varphi }(s,\omega )|^2}-\frac{\nabla \widetilde{\varphi }'(s,\omega )}{\widetilde{\varphi }(s,\omega )}\right) \right) ,\\&\frac{1}{r^2}\,|\Delta \,{\mathsf {p}}(r,\omega )|=\left| \Delta \,\widetilde{{\mathsf {p}}}\left( \tfrac{1}{r},\omega \right) \right| \le O\left( \frac{1}{r^2}\left( \frac{\Delta \widetilde{\varphi }(s,\omega )}{\widetilde{\varphi }(s,\omega )}-\,\frac{p}{2}\,\frac{|\nabla \widetilde{\varphi }(s,\omega )|^2}{|\widetilde{\varphi }(s,\omega )|^2}\right) \right) , \\ \end{aligned}$$

which are of order at most \(1/r^2\). This shows that \(|{\mathsf {b}}(r)|\), \({\mathsf {c}}(r)\le O(r^{n-4})\) and concludes the proof if \(4\le d<n\). When \(d=2\) or 3 and \(p>4\), i.e., \(n<4\), more detailed estimates are needed. We will actually prove Properties (i)–(v) as \(r\rightarrow 0_+\). Using the fact that \(\widetilde{\varphi }\) and \(\varphi \) solve the same equation, this amounts to prove that

  1. (i)

    \(\int _{\mathfrak M}{\left| \frac{\varphi '(s,\omega )}{\varphi (s,\omega )}-\sqrt{\Lambda }\right| ^2}\,dv_g\le O(e^{2\alpha s})\),

  2. (ii)

    \(\int _{\mathfrak M}{\left| \frac{\nabla \varphi (s,\omega )}{\varphi (s,\omega )}\right| ^2}\,dv_g\le O(e^{2\alpha s})\),

  3. (iii)

    \(\int _{\mathfrak M}{\left| \frac{\varphi ''(s,\omega )}{\varphi (s,\omega )}-\,\frac{p}{2}\,\frac{|\varphi '(s,\omega )|^2}{|\varphi (s,\omega )|^2}+\,\alpha \,\frac{\varphi '(s,\omega )}{\varphi (s,\omega )}\right| ^2}\,dv_g\le O(e^{2\alpha s})\),

  4. (iv)

    \(\int _{\mathfrak M}{\left| \frac{p}{2}\,\frac{\varphi '(s,\omega )\,\nabla \varphi (s,\omega )}{|\varphi (s,\omega )|^2}-\frac{\nabla \varphi '(s,\omega )}{\varphi (s,\omega )}\right| ^2}\,dv_g\le O(e^{2\alpha s})\),

  5. (v)

    \(\int _{\mathfrak M}{\left| \frac{\Delta \varphi (s,\omega )}{\varphi (s,\omega )}-\,\frac{p}{2}\,\frac{|\nabla \varphi (s,\omega )|^2}{|\varphi (s,\omega )|^2}\right| ^2}\,dv_g\le O(e^{2\alpha s})\),

as \(s\rightarrow -\infty \).

Proof of (i). Let us consider a positive solution \(\varphi \) to (1.9) and define on \({\mathbb {R}}\) the function

$$\begin{aligned} \varphi _0(s)=\int _{\mathfrak M}{\varphi (s,\omega )}\,dv_g. \end{aligned}$$

By integrating (1.9) on \(\mathfrak M\), we know that \(\varphi _0\) solves

$$\begin{aligned} -\,\varphi _0''+\Lambda \,\varphi _0=\int _{\mathfrak M}{\varphi ^{p-1}}\,dv_g=:h_0(s)\sim e^{-(p-1)\sqrt{\Lambda }\,|s|}\quad \text{ in }\quad {\mathbb {R}}. \end{aligned}$$

From the integral representation

$$\begin{aligned} \varphi _0(s)=\frac{e^{-\sqrt{\Lambda }s}}{2\,\sqrt{\Lambda }}\int _{-\infty }^se^{\sqrt{\Lambda }t}\,h_0(t)\,dt+\frac{e^{\sqrt{\Lambda }s}}{2\,\sqrt{\Lambda }}\int _s^\infty e^{-\sqrt{\Lambda }t}\,h_0(t)\,dt, \end{aligned}$$

we deduce that \(\varphi _0(s)\sim e^{\sqrt{\Lambda }s}\sim \varphi (s,\omega )\) as \(s\rightarrow -\infty \) and

$$\begin{aligned} \frac{\varphi _0'(s)-\sqrt{\Lambda }\,\varphi _0(s)}{\varphi (s,\omega )}\sim & {} -\,e^{-2\sqrt{\Lambda }s}\int _{-\infty }^se^{\sqrt{\Lambda }t}\,h_0(t)\,dt\\= & {} O(e^{2\alpha s})\quad \text{ as }\quad s\rightarrow -\infty . \end{aligned}$$

If we define \(\psi (s,\omega ):=e^{\sqrt{\Lambda }\,|s|}\,\big (\varphi (s,\omega )-\varphi _0(s)\big )\), we may observe that it is bounded and solves the equation

$$\begin{aligned} -\,\partial ^2_s\psi -\,\Delta \,\psi -\,2\,\sqrt{\Lambda }\,\partial _s\psi= & {} e^{\sqrt{\Lambda }\,|s|}\,\big (\varphi ^{p-1}-\varphi _0^{p-1}\big )\nonumber \\=: & {} H\le O\left( e^{-2\alpha |s|}\right) \end{aligned}$$
(8.1)

and

$$\begin{aligned} \frac{\partial _s\varphi (s,\omega )}{\varphi (s,\omega )}-\sqrt{\Lambda }=O\left( e^{2\alpha s}\right) +\frac{\partial _s\psi (s,\omega )}{e^{-\sqrt{\Lambda }\,s}\,\varphi (s,\omega )}\quad \text{ as }\quad s\rightarrow -\infty . \end{aligned}$$

We recall that \(e^{-\sqrt{\Lambda }\,s}\,\varphi (s,\omega )\) is bounded from above and from below by positive constants as \(s\rightarrow -\infty \), and \(|e^{-\sqrt{\Lambda }\,s}\,\partial _s\varphi (s,\omega )|\) is bounded above. As a consequence, we know that \(\partial _s H=O(e^{2\alpha s})\) as \(s\rightarrow -\infty \). Hence we know that

$$\begin{aligned} \Big |\frac{\partial _s\varphi (s,\omega )}{\varphi (s,\omega )}-\sqrt{\Lambda }\Big |\le C\,|\partial _s\psi (s,\omega )|+O(e^{2\alpha s}), \end{aligned}$$

where C is a constant.

We differentiate (8.1) with respect to s. The function \(\partial _s\psi \) solves

$$\begin{aligned} -\,\partial ^2_s(\partial _s\psi )-\,\Delta \,(\partial _s\psi )-\,2\,\sqrt{\Lambda }\,\partial _s(\partial _s\psi )=\partial _sH, \end{aligned}$$
(8.2)

with

$$\begin{aligned} |\partial _sH(s,\omega )|\le O(e^{2\alpha s})\quad \text{ as }\quad s\rightarrow -\infty . \end{aligned}$$

Let us define

$$\begin{aligned} \chi _1(s):=\frac{1}{2}\int _{\mathfrak M}{|\partial _s\psi |^2}\,dv_g, \end{aligned}$$

multiply (8.2) by \(\partial _s\psi \) and integrate over \(\mathfrak M\). Using

$$\begin{aligned} \chi _1'=\int _{\mathfrak M}{\partial _s\psi \,\partial _s^2\psi }\,dv_g \end{aligned}$$

and

$$\begin{aligned} \chi _1''=\int _{\mathfrak M}{\partial _s\psi \,\partial ^2_s(\partial _s\psi )}\,dv_g+\int _{\mathfrak M}{|\partial _s^2\psi |^2}\,dv_g, \end{aligned}$$

we obtain that the nonnegative function \(\chi _1\) solves

$$\begin{aligned} -\,\chi _1''+\int _{\mathfrak M}{|\partial _s^2\psi |^2}\,dv_g+\underbrace{\int _{\mathfrak M}{\left( |\nabla (\partial _s\psi )|^2-\lambda _1\,|\partial _s\psi |^2\right) }\,dv_g}_{\ge 0} +\,2\,\lambda _1\,\chi _1-\,2\,\sqrt{\Lambda }\,\chi _1'=h_1,\nonumber \\ \end{aligned}$$
(8.3)

where the Poincaré inequality

$$\begin{aligned} \int _{\mathfrak M}{|\nabla (\partial _s\psi )|^2}\,dv_g\ge \lambda _1\int _{\mathfrak M}{|\partial _s\psi |^2}\,dv_g \end{aligned}$$

holds because \(\int _{\mathfrak M}{\partial _s\psi }\,dv_g=0\) for any \(s\in {\mathbb {R}}\), by definition of \(\psi \), and where

$$\begin{aligned} h_1:=\int _{\mathfrak M}{\partial _sH\,\partial _s\psi }\,dv_g. \end{aligned}$$

From the Cauchy-Schwarz inequality, we deduce that

$$\begin{aligned} |\chi _1'(s)|^2= & {} \left( \int _{\mathfrak M}{\partial _s\psi \,\partial _s^2\psi }\,dv_g\right) ^2\\\le & {} \int _{\mathfrak M}{|\partial _s\psi |^2}\,dv_g\int _{\mathfrak M}{|\partial _s^2\psi |^2}\,dv_g=2\,\chi _1(s)\int _{\mathfrak M}{|\partial _s^2\psi |^2}\,dv_g, \end{aligned}$$

that is,

$$\begin{aligned} \int _{\mathfrak M}{|\partial _s^2\psi |^2}\,dv_g\ge \frac{|\chi _1'|^2}{2\,\chi _1}, \end{aligned}$$

and inserting this estimate in (8.3) we obtain

$$\begin{aligned} -\,\chi _1''+\frac{|\chi _1'|^2}{2\,\chi _1}+\,2\,\lambda _1\,\chi _1-\,2\,\sqrt{\Lambda }\,\chi _1'\le h_1. \end{aligned}$$

Let \(\zeta _1=\sqrt{\chi _1}\) and observe that it solves

$$\begin{aligned} -\,\zeta _1''+\,\lambda _1\,\zeta _1-\,2\,\sqrt{\Lambda }\,\zeta _1'\le \frac{h_1}{2\,\zeta _1}. \end{aligned}$$

By Cauchy-Schwarz inequality, for \(s\rightarrow -\infty \),

$$\begin{aligned} |h_1 (s)| \le \sqrt{2}\, \left( \int _{\mathfrak M}{|\partial _sH|^2}\,dv_g\right) ^{1/2}\zeta _1(s)\le C\, e^{2\alpha s}\, \zeta _1(s). \end{aligned}$$

Using once more an integral representation of the solution, with \(\mu :=\sqrt{\Lambda +\lambda _1}\), it is easy to check that

$$\begin{aligned} e^{\sqrt{\Lambda } s}\,\zeta _1(s)\le \frac{e^{-\mu s}}{4\,\mu }\int _{-\infty }^se^{(\mu +\sqrt{\Lambda })t}\,\frac{h_1(t)}{\zeta _1(t)}\,dt+\frac{e^{\mu s}}{4\,\mu }\int _s^\infty e^{(\sqrt{\Lambda }-\mu )t}\,\frac{h_1(t)}{\zeta _1(t)}\,dt, \end{aligned}$$

which is enough to deduce that \(\zeta _1(s)\le O\big (e^{\alpha s}\big )\) as \(s\rightarrow -\infty \). Note that the condition that

$$\begin{aligned} \mu - \sqrt{\Lambda }= \sqrt{\Lambda +\lambda _1} - \sqrt{\Lambda }\ge \alpha \end{aligned}$$

is equivalent to the inequality \(\alpha \le \alpha _\mathrm{FS}\). Hence we have shown that for \(\alpha \le \alpha _\mathrm{FS}\),

$$\begin{aligned} \chi _1(s)\le O\left( e^{2\alpha s}\right) \quad \text{ as }\quad s\rightarrow -\infty . \end{aligned}$$
(8.4)

This ends the proof of (i).

Proof of (ii). By differentiating (1.9) with respect to \(\omega \), we obtain

$$\begin{aligned} -\,\partial ^2_s\,\nabla \varphi -\,\nabla \,\Delta \,\varphi +\Lambda \,\nabla \varphi =(p-1)\,\varphi ^{p-2}\,\nabla \varphi \quad \text{ in }\quad {\mathcal {C}}. \end{aligned}$$

We proceed as in case (i). With similar notations, by defining

$$\begin{aligned} \chi _2(s):=\frac{1}{2}\int _{\mathfrak M}{|\nabla \varphi |^2}\,dv_g, \end{aligned}$$

after multiplying the equation by \(\nabla \varphi \) and using the fact that

$$\begin{aligned} \int _{\mathfrak M}{(\Delta \varphi )^2}\,dv_g\ge \lambda _1\int _{\mathfrak M}{|\nabla \varphi |^2}\,dv_g \end{aligned}$$

as, e.g., in [25, Lemma 7] and the Cauchy-Schwarz inequality, we obtain

$$\begin{aligned} -\,\chi _2''+\frac{|\chi _2'|^2}{2\,\chi _2}+\,2\,(\Lambda +\lambda _1)\,\chi _2\le h_2 \, \end{aligned}$$

with \(h_2 := (p-1)\,\int _{\mathfrak M}{\varphi ^{p-2} |\nabla \varphi |^2}\,dv_g = O\big (e^{-\,p\,\sqrt{\Lambda }\,|s|}\big )\). The function \(\zeta _2=\sqrt{\chi _2}\) satisfies

$$\begin{aligned} -\,\zeta _2''+\,(\Lambda +\lambda _1)\,\zeta _2\le \frac{h_2}{2\,\zeta _2}. \end{aligned}$$

By the Cauchy-Schwarz inequality, \(h_2/\zeta _2 = O\big (e^{-\,(p-1)\,\sqrt{\Lambda }\,|s|}\big )\). We easily deduce that

$$\begin{aligned} \chi _2(s)\le O\big (e^{2(\alpha +\sqrt{\Lambda })s}\big )\quad \text{ as }\quad s\rightarrow -\infty . \end{aligned}$$

Indeed, we observe that \(\sqrt{\Lambda +\lambda _1}-\sqrt{\Lambda }\ge \alpha \) for any \(\Lambda \in (0,\Lambda _{\,{\mathrm{FS}}})\) and \(\varphi (s,\omega )\sim e^{\sqrt{\Lambda }\,s}\) as \(s\rightarrow -\infty \), which ends the proof of (ii).

Proof of (iii). With \(\psi =e^{-\sqrt{\Lambda }s}\,(\varphi -\varphi _0)\) and \(\varphi _0(s)=\int _{\mathfrak M}{\varphi (s,\omega )}\,dv_g\) as in case (i), we can check that

$$\begin{aligned} \frac{\varphi ''}{\varphi }-\,\frac{p}{2}\,\frac{|\varphi '|^2}{|\varphi |^2}+\,\alpha \,\frac{\varphi '}{\varphi }= & {} O(e^{2\alpha s})+\frac{e^{\sqrt{\Lambda }s}}{\varphi }\,\partial _s^2\psi \nonumber \\&+\,\left( (2-p)\,\sqrt{\Lambda }+\alpha -p\,\frac{\varphi '_0-\sqrt{\Lambda }\varphi _0}{\varphi }\right) \,\frac{e^{\sqrt{\Lambda }s}}{\varphi }\,\partial _s\psi \nonumber \\&-\, \frac{p}{2}\, \Big ( \frac{e^{\sqrt{\Lambda }s}}{\varphi } \Big )^2 |\partial _s\psi |^2. \end{aligned}$$
(8.5)

Because according to Proposition 8.1 \(\partial _s\psi \) and \(\frac{\partial _s\varphi }{\varphi }\) are bounded as \(s\rightarrow -\infty \), and taking into account (8.4), it remains to prove that

$$\begin{aligned} \chi _3(s):=\frac{1}{2}\int _{\mathfrak M}{|\partial _s^2\psi |^2}\,dv_g \end{aligned}$$

is of order \(O(e^{2\alpha s})\). We differentiate (8.1) twice with respect to s. After multiplying the equation by \(\partial _s^2\psi \) and using the fact that

$$\begin{aligned} \int _{\mathfrak M}{|\nabla (\partial _s^2\psi )|^2}\,dv_g\ge \lambda _1\int _{\mathfrak M}{|\partial _s^2\psi |^2}\,dv_g \end{aligned}$$

because \(\int _{\mathfrak M}{\partial _s^2\psi }\,dv_g=0\), we obtain

$$\begin{aligned} -\,\chi _3''+\frac{|\chi _3'|^2}{2\,\chi _3}+\,2\,\lambda _1\,\chi _3-\,2\,\sqrt{\Lambda }\,\chi _3'\le h_3, \end{aligned}$$

with \( h_3:=\int _{\mathfrak M}{\partial ^2_sH\,\partial ^2_s\psi }\,dv_g. \) With the same arguments as in case (i), we deduce that

$$\begin{aligned} \chi _3(s)\le O\left( e^{2\alpha s}\right) \quad \text{ as }\quad s\rightarrow -\infty . \end{aligned}$$

This ends the proof of (iii).

Proof of (iv). The term \(\frac{\varphi '(s,\omega )\,\nabla \varphi (s,\omega )}{|\varphi (s,\omega )|^2}\) is easily bounded after integrating with respect to \(\omega \) because \(\frac{\partial _s\,\varphi }{\varphi }\) is bounded according to Proposition 8.1 and by (ii). As for the term \(\frac{\nabla \varphi '(s,\omega )}{\varphi (s,\omega )}\), we proceed like in case (ii). By applying the operator \(\nabla \partial _s\) to (1.9), we obtain

$$\begin{aligned}&-\,\partial ^2_s\,(\nabla \partial _s\varphi )-\,\nabla \Delta (\partial _s\varphi )+\Lambda \,\nabla \partial _s\varphi =\partial _s\nabla H\\&\quad =(p-1)\,\varphi ^{p-2}\left( \nabla \partial _s\varphi +(p-2)\,\frac{\partial _s\varphi \,\nabla \varphi }{\varphi }\right) \;\text{ in }\;{\mathcal {C}}. \end{aligned}$$

With similar notations, by defining

$$\begin{aligned} \chi _4(s):=\frac{1}{2}\int _{\mathfrak M}{|\nabla \partial _s\varphi |^2}\,dv_g, \end{aligned}$$

after multiplying the equation by \(\nabla \partial _s\varphi \) and using the Poincaré inequality

$$\begin{aligned} \int _{\mathfrak M}{|\Delta (\partial _s\varphi )|^2}\,dv_g\ge \lambda _1\int _{\mathfrak M}{|\nabla (\partial _s\varphi )|^2}\,dv_g \end{aligned}$$

we obtain

$$\begin{aligned} -\,\chi _4''+\frac{|\chi _4'|^2}{2\,\chi _4}+\,2\,(\Lambda +\lambda _1)\,\chi _4\le h_4, \end{aligned}$$

with \(h_4:=\int _{\mathfrak M}{\partial _s \nabla H\,\partial _s \nabla \varphi }\,dv_g\). With the same arguments, we deduce that

$$\begin{aligned} \chi _4(s)\le O\big (e^{2(\alpha +\sqrt{\Lambda })\,s}\big )\quad \text{ as }\quad s\rightarrow -\infty . \end{aligned}$$

We end the proof of (iv) by observing that \(\varphi (s,\omega )\sim e^{\sqrt{\Lambda }\,s}\) as \(s\rightarrow -\infty \).

Proof of (v). By applying the Laplace-Beltrami operator to (1.9), we obtain

$$\begin{aligned}&-\,\partial ^2_s\,(\Delta \varphi )-\,\Delta ^2\varphi +\Lambda \,\Delta \varphi =\Delta H\\&\quad =(p-1)\,\varphi ^{p-2}\left( \Delta \varphi +(p-2)\,\frac{|\nabla \varphi |^2}{\varphi }\right) \quad \text{ in }\quad {\mathcal {C}}. \end{aligned}$$

We proceed as in case (ii). With similar notations, by defining

$$\begin{aligned} \chi _5(s):=\frac{1}{2}\int _{\mathfrak M}{|\Delta \varphi |^2}\,dv_g, \end{aligned}$$

after multiplying the equation by \(\Delta \varphi \) and using the fact that

$$\begin{aligned} -\int _{\mathfrak M}{\Delta \varphi \,\Delta ^2\varphi }\,dv_g=\int _{\mathfrak M}{|\nabla \Delta \varphi |^2}\,dv_g\ge \lambda _1\int _{\mathfrak M}{|\Delta \varphi |^2}\,dv_g, \end{aligned}$$

we obtain

$$\begin{aligned} -\,\chi _5''+\frac{|\chi _5'|^2}{2\,\chi _5}+\,2\,(\Lambda +\lambda _1)\,\chi _5\le h_5 \end{aligned}$$

with \(h_5:= \int _{\mathfrak M}{\Delta H \, \Delta \varphi }\,dv_g\). With the same arguments, we deduce that

$$\begin{aligned} \chi _5(s)\le O\big (e^{2(\alpha +\sqrt{\Lambda })\,s}\big )\quad \text{ as }\quad s\rightarrow -\infty , \end{aligned}$$

using again the fact that \(\sqrt{\Lambda +\lambda _1}-\sqrt{\Lambda }\ge \alpha \) for any \(\Lambda \in (0,\Lambda _{\,{\mathrm{FS}}})\) and \(\varphi (s,\omega )\sim e^{\sqrt{\Lambda }\,s}\) as \(s\rightarrow -\infty \). The estimate for the other term follows from (ii).

This ends the proof of (v). \(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dolbeault, J., Esteban, M.J. & Loss, M. Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces. Invent. math. 206, 397–440 (2016). https://doi.org/10.1007/s00222-016-0656-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-016-0656-6

Mathematics Subject Classification

  • 35J20
  • 49K30
  • 53C21