Inventiones mathematicae

, Volume 205, Issue 1, pp 83–120 | Cite as

The inverse problem for the local geodesic ray transform

  • Gunther UhlmannEmail author
  • András Vasy


Under a convexity assumption on the boundary we solve a local inverse problem, namely we show that the geodesic X-ray transform can be inverted locally in a stable manner; one even has a reconstruction formula. We also show that under an assumption on the existence of a global foliation by strictly convex hypersurfaces the geodesic X-ray transform is globally injective. In addition we prove stability estimates and propose a layer stripping type algorithm for reconstruction.

Mathematics Subject Classification

53C65 35R30 35S05 53C21 


  1. 1.
    Bernstein, I.N., Gerver, M.L.: Conditions on distinguishability of metrics by hodographs. In: Methods and Algorithms of Interpretation of Seismological Information, Computerized Seismology, vol. 13, pp. 50–73. Nauka, Moscow (in Russian)Google Scholar
  2. 2.
    Boman, J.: Local non-injectivity for weighted Radon transforms. Contemp. Math. 559, 39–47 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Eberlein, P.: When is a geodesic flow of Anosov type? II. J. Differ. Geom. 8, 437–463 (1973)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Frigyik, B., Stefanov, P., Uhlmann, G.: The X-ray transform for a generic family of curves. J. Geom. Anal. 18, 81–97 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Greene, R.E., Wu, H.: \(C^{\infty }\) convex functions and manifolds of positive curvature. Acta Math. 137, 209–245 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Helgason, S.: Integral Geometry and Radon Transforms. Springer, New York (2010)zbMATHGoogle Scholar
  7. 7.
    Herglotz, G.: Über die Elastizität der Erde bei Berücksichtigung ihrer variablen Dichte. Z. Math. Phys. 52, 275–299 (1905)zbMATHGoogle Scholar
  8. 8.
    Holman, S., Uhlmann, G.: On the geodesic ray transform with conjugate points. arXiv:1502.06545 (preprint)
  9. 9.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. 1–4. Springer, New York (1983)zbMATHGoogle Scholar
  10. 10.
    Ivanov, S.: Volume comparison via boundary distances. In: Proceedings of the International Congress of Mathematicians, vol. II, pp. 769–784, New Delhi (2010)Google Scholar
  11. 11.
    Krishnan, V.: A support theorem for the geodesic ray transform on functions. J. Fourier Anal. Appl. 15, 515–520 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mazzeo, R., Melrose, R.B.: Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75, 260–310 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Melrose, R.B.: Spectral and Scattering Theory for the Laplacian on Asymptotically Euclidian Spaces. Marcel Dekker, New York (1994)zbMATHGoogle Scholar
  14. 14.
    Mukhometov, R.G.: The reconstruction problem of a two-dimensional Riemannian metric, and integral geometry (Russian). Dokl. Akad. Nauk SSSR 232(1), 32–35 (1977)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Mukhometov, R.G.: On a problem of reconstructing Riemannian metrics. Sib. Math. J. 22(3), 420–433 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mukhometov, R.G., Romanov, V.G.: On the problem of finding an isotropic Riemannian metric in an \(n\)-dimensional space (Russian). Dokl. Akad. Nauk SSSR 243(1), 41–44 (1978)MathSciNetGoogle Scholar
  17. 17.
    Parenti, C.: Operatori pseudo-differenziali in \(R^{n}\) e applicazioni. Ann. Mat. Pura Appl. (4) 93, 359–389 (1972)Google Scholar
  18. 18.
    Shubin, M.A.: Pseudodifferential operators in \(R^{n}\). Dokl. Akad. Nauk SSSR 196, 316–319 (1971)MathSciNetGoogle Scholar
  19. 19.
    Stefanov, P., Uhlmann, G.: Stability estimates for the X-ray transform of tensor fields and boundary rigidity. Duke Math. J. 123, 445–467 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Stefanov, P., Uhlmann, G.: Boundary and lens rigidity, tensor tomography and analytic microlocal analysis. In: Aoki, T., Majima, H., Katei, Y., Tose, N. (eds.) Algebraic Analysis of Differential Equations. Fetschrift in Honor of Takahiro Kawai, pp. 275–293 (2008)Google Scholar
  21. 21.
    Stefanov, P., Uhlmann, G.: Integral geometry of tensor fields for a class of non-simple Riemannian manifolds. Am. J. Math. 130, 239–268 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Stefanov, P., Uhlmann, G.: The geodesic X-ray transform with fold caustics. Anal. PDE 5, 219–260 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Stefanov, P., Uhlmann, G.: Recovery of a source term or a speed with one measurement and applications. Trans. AMS 365, 5737–5758 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wiechert, E., Zoeppritz, K.: Über Erdbebenwellen. Nachr. Koenigl. (Geselschaft Wiss, Goettingen) 4, 415–549 (1907)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of WashingtonSeattleUSA
  2. 2.Department of MathematicsUniversity of HelsinkiHelsinkiFinland
  3. 3.HKUST Jockey Club Institute for Advanced Study, HKUSTHong KongChina
  4. 4.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations