Abstract
In this note we show that if a projective manifold admits a Kähler metric with negative holomorphic sectional curvature then the canonical bundle of the manifold is ample. This confirms a conjecture of the second author.
This is a preview of subscription content, access via your institution.
References
Campana, F.: Twistor spaces and nonhyperbolicity of certain symplectic Kähler manifolds, Complex analysis (Wuppertal, 1991), 64–69, Aspects Math., E17, Vieweg, Braunschweig, 1991
Debarre, O.: Higher-dimensional algebraic geometry. Universitext. Springer-Verlag, New York (2001)
Greene, R.E., Wu, H.: Function theory on manifolds which possess a pole. Lecture Notes in Mathematics, vol. 699. Springer, Berlin (1979)
Heier, G., Lu, S., Wong, B.: On the canonical line bundle and negative holomorphic sectional curvature. Math. Res. Lett. 17(6), 1101–1110 (2010)
Heier, G., Lu, S., Wong, B.: Kähler manifolds of semi-negative holomorphic sectional curvature, arXiv:1403.4210, J. Diff. Geom
Kawamata, Y.: Pluricanonical systems on minimal algebraic varieties. Invent. Math. 79, 567–588 (1985)
Kobayashi, S.: Hyperbolic complex spaces. Springer, New York (1998)
Kollár, J., Mori, S.: Birational geometry of algebraic varieties. With the collaboration of C. H. Clemens and A. Corti. Translated from the 1998 Japanese original. Cambridge Tracts in Mathematics, 134. Cambridge University Press, Cambridge (1998)
Lang, S.: Hyperbolic and Diophantine analysis. Bull. Amer. Math. Soc. (N.S.) 14(2), 159–205 (1986)
Lazarsfeld, R.: Positivity in algebraic geometry. I. Classical setting: line bundles and linear series. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 48. Springer-Verlag, Berlin (2004)
Peternell, T.: Calabi-Yau manifolds and a conjecture of Kobayashi. Math. Z. 207, 305–318 (1991)
Royden, H.L.: The Ahlfors-Schwarz lemma in several complex variables. Comment. Math. Helv. 55(4), 547–558 (1980)
Wong, B.: The uniformization of compact Kähler surfaces of negative curvature. J. Diff. Geom. 16, 407–420 (1981)
Wong, P.-M., Wu, D., Yau, S.-T.: Picard number, holomorphic sectional curvature, and ampleness. Proc. Amer. Math. Soc. 140(2), 621–626 (2012)
Wu, D., Yau, S.-T., Zheng, F.: A degenerate Monge-Ampère equation and the boundary classes of Kähler cones. Math. Res. Lett. 16(2), 365–374 (2009)
Wu, H.: A remark on holomorphic sectional curvature. Indiana Univ. Math. J. 22, 1103–1108 (1972/73)
Yau, S.-T.: A general Schwarz lemma for Kähler manifolds. Amer. J. Math. 100(1), 197–203 (1978)
Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math. 31(3), 339–411 (1978)
Zheng, F.: Complex Differential Geometry, AMS/IP Studies in Advanced Mathematics, 18. RI; International Press, Boston, MA, American Mathematical Society, Providence (2000)
Author information
Authors and Affiliations
Corresponding author
Additional information
The first author was partially supported by the NSF Grant DMS-1308837. The second author was partially supported by the NSF Grant DMS-0804454.
Rights and permissions
About this article
Cite this article
Wu, D., Yau, ST. Negative holomorphic curvature and positive canonical bundle. Invent. math. 204, 595–604 (2016). https://doi.org/10.1007/s00222-015-0621-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00222-015-0621-9