# Margulis spacetimes via the arc complex

- 390 Downloads
- 3 Citations

## Abstract

We study *strip deformations* of convex cocompact hyperbolic surfaces, defined by inserting hyperbolic strips along a collection of disjoint geodesic arcs properly embedded in the surface. We prove that any deformation of the surface that uniformly lengthens all closed geodesics can be realized as a strip deformation, in an essentially unique way. The infinitesimal version of this result gives a parameterization, by the arc complex, of the moduli space of Margulis spacetimes with fixed convex cocompact linear holonomy. As an application, we provide a new proof of the tameness of such Margulis spacetimes *M* by establishing the Crooked Plane Conjecture, which states that *M* admits a fundamental domain bounded by piecewise linear surfaces called crooked planes. The noninfinitesimal version gives an analogous theory for noncompact complete anti-de Sitter 3-manifolds.

## Notes

### Acknowledgments

We would like to thank Thierry Barbot, Virginie Charette, Todd Drumm, and Bill Goldman for interesting discussions related to this work, as well as François Labourie and Yair Minsky for igniting remarks. We are grateful to the Institut Henri Poincaré in Paris and to the Centre de Recherches Mathématiques in Montreal for giving us the opportunity to work together in stimulating environments.

### References

- 1.Abels, H.: Properly discontinuous groups of affine transformations: a survey. Geom. Dedicata
**87**, 309–333 (2001)MathSciNetCrossRefMATHGoogle Scholar - 2.Auslander, L.: The structure of compact locally affine manifolds. Topology
**3**, 131–139 (1964)MathSciNetCrossRefMATHGoogle Scholar - 3.Brock, J., Masur, H.: Coarse and synthetic Weil–Petersson geometry: quasi-flats, geodesics, and relative hyperbolicity. Geom. Topol.
**12**, 2453–2495 (2008)MathSciNetCrossRefMATHGoogle Scholar - 4.Brock, J., Minsky, Y., Namazi, H., Souto, J.: Bounded combinatorics and uniform models for hyperbolic 3-manifolds. J. Topol. (2015, to appear)Google Scholar
- 5.Burelle, J.-P., Charette, V., Drumm, T., Goldman, W.M.: Crooked half-spaces. Enseign. Math.
**60**, 43–78 (2014)MathSciNetCrossRefMATHGoogle Scholar - 6.Charette, V., Drumm, T., Goldman, W.M.: Affine deformations of the three-holed sphere. Geom. Topol.
**14**, 1355–1382 (2010)MathSciNetCrossRefMATHGoogle Scholar - 7.Charette, V., Drumm, T., Goldman, W.M.: Finite-sided deformation spaces of complete affine \(3\)-manifolds. J. Topol.
**7**, 225–246 (2014)MathSciNetCrossRefMATHGoogle Scholar - 8.Charette, V., Drumm, T., Goldman, W.M.: Proper affine deformations of two-generator Fuchsian groups (preprint). arXiv:1501.04535
- 9.Charette, V., Goldman, W.M.: Affine Schottky groups and crooked tilings. In: Crystallographic Groups and Their Generalizations (Kortrijk, 1999), pp. 69–97. Contemporary Mathematics, vol. 262. American Mathematical Society, Providence (2000)Google Scholar
- 10.Charette, V., Francoeur, D., Lareau-Dussault, R.: Fundamental domains in the Einstein Universe. Topol. Appl.
**174**, 62–80 (2014)Google Scholar - 11.Choi, S., Goldman, W.M.: Topological tameness of Margulis spacetimes (2013, preprint)Google Scholar
- 12.Danciger, J., Guéritaud, F., Kassel, F.: Geometry and topology of complete Lorentz spacetimes of constant curvature. Ann. Sci. Éc. Norm. Sup. (2015, to appear)Google Scholar
- 13.Danciger, J., Guéritaud, F., Kassel, F.: Fundamental domains for free groups acting on anti-de Sitter \(3\)-space. Math. Res. Lett. (2015, to appear). arXiv:1410.5804
- 14.Danciger, J., Guéritaud, F., Kassel, F.: Margulis spacetimes with parabolic elements (in preparation)Google Scholar
- 15.Deroin, B., Tholozan, N.: Dominating surface group representations by Fuchsian ones (preprint). arXiv:1311.2919
- 16.Drumm, T.: Fundamental polyhedra for Margulis space-times. Topology
**21**, 677–683 (1992)MathSciNetCrossRefMATHGoogle Scholar - 17.Drumm, T., Goldman, W.M.: Crooked planes. Electron. Res. Announc. Am. Math. Soc.
**1**, 10–17 (1995)MathSciNetCrossRefMATHGoogle Scholar - 18.Drumm, T., Goldman, W.M.: The geometry of crooked planes. Topology
**38**, 323–352 (1999)MathSciNetCrossRefMATHGoogle Scholar - 19.Frances, C.: The conformal boundary of Margulis space-times. C. R. Math. Acad. Sci. Paris
**336**, 751–756 (2003)MathSciNetCrossRefMATHGoogle Scholar - 20.Fried, D., Goldman, W.M.: Three-dimensional affine crystallographic groups. Adv. Math.
**47**, 1–49 (1983)MathSciNetCrossRefMATHGoogle Scholar - 21.Goldman, W.M.: Crooked surfaces and anti-de Sitter geometry. Geom. Dedicata
**175**, 159–187 (2015)MathSciNetCrossRefMATHGoogle Scholar - 22.Goldman, W.M., Labourie, F., Margulis, G.A.: Proper affine actions and geodesic flows of hyperbolic surfaces. Ann. Math.
**170**, 1051–1083 (2009)MathSciNetCrossRefMATHGoogle Scholar - 23.Goldman, W.M., Labourie, F., Margulis, G.A., Minsky, Y.: Complete flat Lorentz \(3\)-manifolds and laminations on hyperbolic surfaces (in preparation)Google Scholar
- 24.Goldman, W.M., Margulis, G.A.: Flat Lorentz \(3\)-manifolds and cocompact Fuchsian groups. In: Crystallographic Groups and Their Generalizations (Kortrijk, 1999), pp. 135–145. Contemporary Mathematics, vol. 262. American Mathematical Society, Providence (2000)Google Scholar
- 25.Guéritaud, F.: Lengthening deformations of singular hyperbolic tori. In: Low-dimensional Topology and Geometry, in honor of M. Boileau. Ann. Fac. Sci. Toulouse Math. (2015, to appear). arXiv:1506.05654
- 26.Guéritaud, F., Kassel, F.: Maximally stretched laminations on geometrically finite hyperbolic manifolds. Geom. Topol. (2015, to appear)Google Scholar
- 27.Guéritaud, F., Kassel, F., Wolff, M.: Compact anti-de Sitter \(3\)-manifolds and folded hyperbolic structures on surfaces. Pac. J. Math.
**275**, 325–359 (2015)MathSciNetCrossRefMATHGoogle Scholar - 28.Guo, R., Luo, F.: Cell decompositions of Teichmüller spaces of surfaces with boundary. Pac. J. Math.
**253**, 423–438 (2011)MathSciNetCrossRefMATHGoogle Scholar - 29.Harer, J.L.: The virtual cohomological dimension of the mapping class group of an orientable surface. Invent. Math.
**84**, 157–176 (1986)MathSciNetCrossRefMATHGoogle Scholar - 30.Hazel, G.P.: Triangulating Teichmüller space using the Ricci flow. Ph.D. thesis, University of California, San Diego (2004). See http://math.ucsd.edu/~thesis/thesis/ghazel/ghazel
- 31.Kassel, F.: Quotients compacts d’espaces homogènes réels ou \(p\)-adiques. Ph.D. thesis, Université Paris-Sud 11 (2009). http://math.univ-lille1.fr/~kassel/
- 32.Kerckhoff, S.P.: The Nielsen realization problem. Ann. Math.
**117**, 235–265 (1983)MathSciNetCrossRefMATHGoogle Scholar - 33.Kulkarni, R.S., Raymond, F.: 3-dimensional Lorentz space-forms and Seifert fiber spaces. J. Differ. Geom.
**21**, 231–268 (1985)MathSciNetMATHGoogle Scholar - 34.Margulis, G.A.: Free completely discontinuous groups of affine transformations (in Russian). Dokl. Akad. Nauk SSSR
**272**, 785–788 (1983)MathSciNetGoogle Scholar - 35.Margulis, G.A.: Complete affine locally flat manifolds with a free fundamental group. J. Soviet Math.
**1934**, 129–139 (1987) [Translated from Zap. Naucha. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI)**134**, 190–205 (1984)]Google Scholar - 36.Masur, H., Minsky, Y.: Geometry of the complex of curves. I. Hyperbolicity. Invent. Math.
**138**, 103–149 (1999)MathSciNetCrossRefMATHGoogle Scholar - 37.Mess, G.: Lorentz spacetimes of constant curvature (1990). Geom. Dedicata
**126**, 3–45 (2007)MathSciNetCrossRefMATHGoogle Scholar - 38.Milnor, J.: On fundamental groups of complete affinely flat manifolds. Adv. Math.
**25**, 178–187 (1977)MathSciNetCrossRefMATHGoogle Scholar - 39.Penner, R.C.: The decorated Teichmüller space of punctured surfaces. Commun. Math. Phys.
**113**, 299–339 (1987)MathSciNetCrossRefMATHGoogle Scholar - 40.Penner, R.C.: Decorated Teichmüller Theory. QGM Master Class Series. European Mathematical Society, Zürich (2012)CrossRefGoogle Scholar
- 41.Papadopoulos, A., Théret, G.: Shortening all the simple closed geodesics on surfaces with boundary. Proc. Am. Math. Soc.
**138**, 1775–1784 (2010)MathSciNetCrossRefMATHGoogle Scholar - 42.Rafi, K.: A combinatorial model for the Teichmüller metric. Geom. Funct. Anal.
**17**, 936–959 (2007)MathSciNetCrossRefMATHGoogle Scholar - 43.Thurston, W.P.: Minimal stretch maps between hyperbolic surfaces (1986, preprint). arXiv:math/9801039
- 44.Thurston, W.P.: Earthquakes in two-dimensional hyperbolic geometry. In: Low-Dimensional Topology and Kleinian Groups (Coventry/Durham, 1984), pp. 91–112. London Mathematical Society Lecture Note Series, vol. 112. Cambridge University Press, Cambridge (1986)Google Scholar
- 45.Tholozan, N.: Dominating surface group representations and deforming closed anti-de Sitter \(3\)-manifolds. Ann. Inst. Fourier (2015, to appear)Google Scholar