Advertisement

Inventiones mathematicae

, Volume 203, Issue 3, pp 681–771 | Cite as

New non-arithmetic complex hyperbolic lattices

  • Martin Deraux
  • John R. Parker
  • Julien PaupertEmail author
Article

Abstract

We produce a family of new, non-arithmetic lattices in \({\mathrm{PU}}(2,1)\). All previously known examples were commensurable with lattices constructed by Picard, Mostow, and Deligne–Mostow, and fell into nine commensurability classes. Our groups produce five new distinct commensurability classes. Most of the techniques are completely general, and provide efficient geometric and computational tools for constructing fundamental domains for discrete groups acting on the complex hyperbolic plane.

Notes

Acknowledgments

The authors would like to thank the following institutions for their support during the preparation of this paper, in chronological order: the University of Utah, Université de Fribourg, Durham University, Université de Grenoble, Arizona State University. The authors acknowledge support from the ANR through the program “Structures Géométriques et Triangulations”, NSF Grants DMS 1107452, 1107263, 1107367 (the GEAR Network) and ICERM at Brown University. The third author was also partially supported by SNF Grant 200020-121506/1 and NSF Grant DMS 1007340/1249147. The authors would also like to thank Bernard Parisse and Fabrice Rouillier for useful assistance on the computational aspects, as well as the referee for several suggestions which improved the exposition of the paper.

References

  1. 1.
    Allcock, D., Carlson, J.A., Toledo, D.: The complex hyperbolic geometry of the moduli space of cubic surfaces. J. Algebraic Geom. 11(4), 659–724 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Barthel, G., Hirzebruch, F., Höfer, T.: Geradenkonfigurationen und Algebraische Flächen. Aspects of Mathematics, D4. Friedr. Vieweg & Sohn, Braunschweig (1987)CrossRefGoogle Scholar
  3. 3.
    Conway, J.H., Jones, A.J.: Trigonometric diophantine equations (on vanishing sums of roots of unity). Acta. Arithmetica 30, 229–240 (1976)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics, vol. 138. Springer, Berlin (1993)CrossRefGoogle Scholar
  5. 5.
    Corlette, K.: Archimedean superrigidity and hyperbolic geometry. Ann. Math. (2) 135(1), 165–182 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Cartwright, D.I., Steger, T.: Enumeration of the 50 fake projective planes. C. R. Math. Acad. Sci. Paris 348(1–2), 11–13 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Deraux, M.: Dirichlet domains for the Mostow lattices. Exp. Math. 14(4), 467–490 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Deraux, M.: Deforming the \({\mathbb{R}}\)-Fuchsian \((4,4,4)\)-triangle group into a lattice. Topology 45, 989–1020 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Deraux, M., Falbel, E., Paupert, J.: New constructions of fundamental polyhedra in complex hyperbolic space. Acta Math. 194, 155–201 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Deligne, P., Mostow, G.D.: Monodromy of hypergeometric functions and non-lattice integral monodromy. Inst. Hautes Études Sci. Publ. Math. 63, 5–89 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Deligne, P., Mostow, G.D.: Commensurabilities Among Lattices in \({\rm PU}(1, n)\). Annals of Mathematics Studies, vol. 132. Princeton Uniersity Press, Princeton (1993)Google Scholar
  12. 12.
    Deraux, M., Parker, J.R., Paupert, J.: Census for the complex hyperbolic sporadic triangle groups. Exp. Math. 20, 467–486 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Falbel, E., Parker, J.: The geometry of the Eisenstein–Picard modular group. Duke Math. J. 131, 249–289 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Giraud, G.: Sur certaines fonctions automorphes de deux variables. Ann. Sci. École Norm. Sup. 38, 43–164 (1921)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Goldman, W.M.: Complex Hyperbolic Geometry. Oxford Mathematical Monographs. Oxford University Press, Oxford (1999)Google Scholar
  16. 16.
    Gromov, M., Piatetski-Shapiro, I.: Nonarithmetic groups in Lobachevsky spaces. Inst. Hautes Études Sci. Publ. Math. 66, 93–103 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Gromov, M., Schoen, R.: Harmonic maps into singular spaces and \(p\)-adic superrigidity for lattices in groups of rank one. Inst. Hautes Études Sci. Publ. Math. 76, 165–246 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Hirzebruch, F.: Arrangements of lines and algebraic surfaces. In: Arithmetic and Geometry, vol. II, Progress in Mathematics, vol. 36, pp. 113–140. Birkhäuser Boston (1983)Google Scholar
  19. 19.
    Hersonsky, S., Paulin, F.: On the volumes of complex hyperbolic manifolds. Duke Math. J. 84(3), 719–737 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Hsieh, P.-H.: Cotranchal bisectors in complex hyperbolic space. Geom. Dedicata 97, 93–98 (2003). [special volume dedicated to the memory of Hanna Miriam Sandler (1960–1999]CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Kappes, A., Möller, M.: Lyapunov spectrum of ball quotients with applications to commensurability questions (2012). arXiv:1207.5433 (preprint) (to appear in Duke Math. J)
  22. 22.
    Kato, F.: On the Shimura variety having Mumford’s fake projective plane as a connected component. Math. Z. 259, 631–641 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Klingler, B.: Sur la rigidité de certains groupes fondamentaux, l’arithméticité des réseaux hyperboliques complexes, et les “faux plans projectifs”. Invent. Math. 153(1), 105–143 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Kondo, S.: A complex hyperbolic structure for the moduli space of curves of genus three. J. Reine Angew. Math. 525, 219–232 (2000)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Margulis, G. A.: Discrete groups of motions of manifolds of nonpositive curvature. In: Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), vol. 2, pp. 21–34. Canadian Mathematical Congress, Montreal (1975)Google Scholar
  26. 26.
    Margulis, G.A.: Discrete subgroups of Semisimple Lie Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 17. Springer, Berlin (1991)CrossRefGoogle Scholar
  27. 27.
    McMullen, C. T.: The Gauss–Bonnet theorem for cone manifolds and volumes of moduli spaces (2013) (preprint)Google Scholar
  28. 28.
    McReynolds, D.B.: Finite subgroups of arithmetic lattices in \({\rm U}(2,1)\). Geom. Dedicata 122, 135–144 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Mostow, G.D.: On a remarkable class of polyhedra in complex hyperbolic space. Pac. J. Math. 86, 171–276 (1980)CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Parker, J.R.: Cone metrics on the sphere and Livne’s lattices. Acta Math. 196, 1–64 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    Parker, J.R.: Unfaithful complex hyperbolic triangle groups I: involutions. Pac. J. Math. 238, 145–169 (2008)CrossRefzbMATHGoogle Scholar
  32. 32.
    Parker, J.R.: Complex Hyperbolic Kleinian Groups. Cambridge University Press (to appear)Google Scholar
  33. 33.
    Paupert, J.: Unfaithful complex hyperbolic triangle groups III: arithmeticity and commensurability. Pac. J. Math. 245, 359–372 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Picard, E.: Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques. Ann. Sci. École Norm. Sup. 2(10), 305–322 (1881)Google Scholar
  35. 35.
    Parker, J.R., Paupert, J.: Unfaithful complex hyperbolic triangle groups II: higher order reflections. Pac. J. Math. 239, 357–389 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Prasad, G., Yeung, S.-K.: Fake projective planes. Invent. Math. 168(2), 321–370 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    Raghunathan, M.S.: Discrete subgroups of Lie groups. Springer, New York (1972). (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68)CrossRefzbMATHGoogle Scholar
  38. 38.
    Reznikov, A.: Simpson’s theory and superrigidity of complex hyperbolic lattices. C. R. Acad. Sci. Paris Sér. I Math. 320(9), 1061–1064 (1995)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Sauter, J.K.: Isomorphisms among monodromy groups and applications to lattices in \({\rm PU}(1,2)\). Pac. J. Math. 146(2), 331–384 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    Schwartz, R. E.: Complex hyperbolic triangle groups. In: Proceedings of the International Congress of Mathematicians (Beijing, 2002), vol. II, pp. 339–349. Higher Ed. Press, Beijing (2002)Google Scholar
  41. 41.
    Schwartz, R.E.: Real hyperbolic on the outside, complex hyperbolic on the inside. Invent. Math. 151(2), 221–295 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  42. 42.
    Shvartsman, O.V.: An example of a nonarithmetic discrete group in the complex ball. In: Lie Groups, Their Discrete Subgroups, and Invariant Theory, Advances in Soviet Mathematics, vol. 8, pp. 191–196. American Mathematical Society, Providence (1992)Google Scholar
  43. 43.
    Stover, M.: Arithmeticity of complex hyperbolic triangle groups. Pac. J. Math. 257(1), 243–256 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  44. 44.
    Thompson, J.M.: Complex hyperbolic triangle groups. Ph.D. thesis, Durham University (2010)Google Scholar
  45. 45.
    Thurston, W.P.: Shapes of polyhedra and triangulations of the sphere. Geom. Topol. Monogr. 1, 511–549 (1998)CrossRefMathSciNetGoogle Scholar
  46. 46.
    Tits, J.: Classification of algebraic semisimple groups. In: Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), pp. 33–62. American Mathematical Society, Providence (1966)Google Scholar
  47. 47.
    Vinberg, E.B.: Discrete groups generated by reflections in Lobačevskiĭ spaces. Math. USSR Sb. 1, 429–444 (1968)CrossRefGoogle Scholar
  48. 48.
    Weil, A.: Algebras with involutions and the classical groups. J. Indian Math. Soc. 24(589–623), 1960 (1961)MathSciNetGoogle Scholar
  49. 49.
    Yeung, S.-K.: Integrality and arithmeticity of co-compact lattice corresponding to certain complex two-ball quotients of Picard number one. Asian J. Math. 8(1), 107–129 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  50. 50.
    Zhao, T.: New construction of fundamental domains for certain Mostow groups. Pac. J. Math. 259(1), 209–256 (2012)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Martin Deraux
    • 1
  • John R. Parker
    • 2
  • Julien Paupert
    • 3
    Email author
  1. 1.Institut FourierUniversité de Grenoble 1Saint-Martin d’ HèresFrance
  2. 2.Department of Mathematical SciencesDurham UniversityDurhamUK
  3. 3.School of Mathematical and Statistical SciencesArizona State UniversityTempeUSA

Personalised recommendations