Abstract
Using lattice theory on special \(K3\) surfaces, calculations on moduli stacks of pointed curves and Voisin’s proof of Green’s Conjecture on syzygies of canonical curves, we prove the Prym–Green Conjecture on the naturality of the resolution of a general Prym-canonical curve of odd genus, as well as (many cases of) the Green–Lazarsfeld Secant Conjecture on syzygies of non-special line bundles on general curves.
This is a preview of subscription content, access via your institution.
References
Aprodu, M., Farkas, G.: The Green Conjecture for smooth curves lying on arbitrary \(K3\) surfaces. Compos. Math. 147, 839–851 (2011)
Aprodu, M., Farkas, G.: Green’s Conjecture for general covers, compact moduli spaces and vector bundles. In: Alexeev, V., et al. (eds), Contemporary Mathematics, vol. 564, pp. 211–226 (2012)
Arbarello, E., Cornalba, M.: The Picard group of the moduli space of curves. Topology 26, 153–171 (1987)
Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves, Grundlehren der mathematischen Wissenschaften, vol. I. Springer, New York (1985)
Chiodo, A., Eisenbud, D., Farkas, G., Schreyer, F.-O.: Syzygies of torsion bundles and the geometry of the level \(\ell \) modular varieties over \(\overline{\cal M}_g\). Invent. Math. 194, 73–118 (2013)
Dolgachev, I.: Mirror symmetry for lattice polarized \(K3\) surfaces. J. Math. Sci. 81, 2599–2630 (1996)
Farkas, G.: Koszul divisors on moduli spaces of curves. Am. J. Math. 131, 819–869 (2009)
Farkas, G.: Brill–Noether with ramification at unassigned points. J. Pure Appl. Algebra 217, 1838–1843 (2013)
Farkas, G., Mustaţă, M., Popa, M.: Divisors on \({\cal M}_{g, g+1}\) and the minimal resolution conjecture for points on canonical curves. Annales Sci. de L’École Normale Supérieure 36, 553–581 (2003)
Farkas, G., Ludwig, K.: The Kodaira dimension of the moduli space of Prym varieties. J. Eur. Math. Soc. 12, 755–795 (2010)
Farkas, G., Verra, A.: Moduli of theta-characteristics via Nikulin surfaces. Math. Ann. 354, 465–496 (2012)
Fulton, W., Harris, J., Lazarsfeld, R.: Excess linear series on an algebraic curve. Proc. Am. Math. Soc. 92, 320–322 (1984)
Garbagnati, A., Sarti, A.: Projective models of \(K3\) surfaces with an even set. Adv. Geom. 8, 413–440 (2008)
van Geemen, B., Sarti, A.: Nikulin involutions on \(K3\) surfaces. Math. Z. 255, 731–753 (2007)
Green, M.: Koszul cohomology and the cohomology of projective varieties. J. Differ. Geom. 19, 125–171 (1984)
Green, M., Lazarsfeld, R.: On the projective normality of complete linear series on an algebraic curve. Invent. Math. 83, 73–90 (1986)
Green, M., Lazarsfeld, R.: Some results on the syzygies of finite sets and algebraic curves. Compos. Math. 67, 301–314 (1988)
Harris, J., Mumford, D.: On the Kodaira dimension of \(\overline{\cal M}_g\). Invent. Math. 67, 23–88 (1982)
Huybrechts, D.: Lectures on \(K3\) surfaces. http://www.math.uni-bonn.de/people/huybrech/K3Global
Kemeny, M.: The moduli of singular curves on K3 surfaces. J. de Mathematiqes Pures et Appliquees. arXiv:1401.1047 (to appear)
Koh, J., Stillman, M.: Linear syzygies and line bundles on an algebraic curve. J. Algebra 125, 120–132 (1989)
Lazarsfeld, R.: Brill–Noether–Petri without degenerations. J. Differ. Geom. 23, 299–307 (1986)
Lazarsfeld, R.: A Sampling of Vector Bundle Techniques in the Study of Linear Series, Lectures on Riemann Surfaces (Trieste, 1987), World Scientific, pp. 500–559
Mayer, A.: Families of \(K3\) surfaces. Nagoya Math. J. 48, 1–17 (1972)
Schreyer, F.-O.: Syzygies of canonical curves and special linear series. Math. Ann. 275, 105–137 (1986)
Voisin, C.: Green’s generic syzygy conjecture for curves of even genus lying on a \(K3\) surface. J. Eur. Math. Soc. 4, 363–404 (2002)
Voisin, C.: Green’s canonical syzygy conjecture for generic curves of odd genus. Compos. Math. 141, 1163–1190 (2005)
Acknowledgments
We are grateful to M. Aprodu, D. Eisenbud, J. Harris, R. Lazarsfeld, F.-O. Schreyer, and especially to C. Voisin for many useful discussions related to this circle of ideas.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Farkas, G., Kemeny, M. The generic Green–Lazarsfeld Secant Conjecture. Invent. math. 203, 265–301 (2016). https://doi.org/10.1007/s00222-015-0595-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00222-015-0595-7