Inventiones mathematicae

, Volume 203, Issue 1, pp 265–301 | Cite as

The generic Green–Lazarsfeld Secant Conjecture

  • Gavril FarkasEmail author
  • Michael Kemeny


Using lattice theory on special \(K3\) surfaces, calculations on moduli stacks of pointed curves and Voisin’s proof of Green’s Conjecture on syzygies of canonical curves, we prove the Prym–Green Conjecture on the naturality of the resolution of a general Prym-canonical curve of odd genus, as well as (many cases of) the Green–Lazarsfeld Secant Conjecture on syzygies of non-special line bundles on general curves.



We are grateful to M. Aprodu, D. Eisenbud, J. Harris, R. Lazarsfeld, F.-O. Schreyer, and especially to C. Voisin for many useful discussions related to this circle of ideas.


  1. 1.
    Aprodu, M., Farkas, G.: The Green Conjecture for smooth curves lying on arbitrary \(K3\) surfaces. Compos. Math. 147, 839–851 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aprodu, M., Farkas, G.: Green’s Conjecture for general covers, compact moduli spaces and vector bundles. In: Alexeev, V., et al. (eds), Contemporary Mathematics, vol. 564, pp. 211–226 (2012)Google Scholar
  3. 3.
    Arbarello, E., Cornalba, M.: The Picard group of the moduli space of curves. Topology 26, 153–171 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves, Grundlehren der mathematischen Wissenschaften, vol. I. Springer, New York (1985)CrossRefGoogle Scholar
  5. 5.
    Chiodo, A., Eisenbud, D., Farkas, G., Schreyer, F.-O.: Syzygies of torsion bundles and the geometry of the level \(\ell \) modular varieties over \(\overline{\cal M}_g\). Invent. Math. 194, 73–118 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dolgachev, I.: Mirror symmetry for lattice polarized \(K3\) surfaces. J. Math. Sci. 81, 2599–2630 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Farkas, G.: Koszul divisors on moduli spaces of curves. Am. J. Math. 131, 819–869 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Farkas, G.: Brill–Noether with ramification at unassigned points. J. Pure Appl. Algebra 217, 1838–1843 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Farkas, G., Mustaţă, M., Popa, M.: Divisors on \({\cal M}_{g, g+1}\) and the minimal resolution conjecture for points on canonical curves. Annales Sci. de L’École Normale Supérieure 36, 553–581 (2003)CrossRefzbMATHGoogle Scholar
  10. 10.
    Farkas, G., Ludwig, K.: The Kodaira dimension of the moduli space of Prym varieties. J. Eur. Math. Soc. 12, 755–795 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Farkas, G., Verra, A.: Moduli of theta-characteristics via Nikulin surfaces. Math. Ann. 354, 465–496 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fulton, W., Harris, J., Lazarsfeld, R.: Excess linear series on an algebraic curve. Proc. Am. Math. Soc. 92, 320–322 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Garbagnati, A., Sarti, A.: Projective models of \(K3\) surfaces with an even set. Adv. Geom. 8, 413–440 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    van Geemen, B., Sarti, A.: Nikulin involutions on \(K3\) surfaces. Math. Z. 255, 731–753 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Green, M.: Koszul cohomology and the cohomology of projective varieties. J. Differ. Geom. 19, 125–171 (1984)zbMATHGoogle Scholar
  16. 16.
    Green, M., Lazarsfeld, R.: On the projective normality of complete linear series on an algebraic curve. Invent. Math. 83, 73–90 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Green, M., Lazarsfeld, R.: Some results on the syzygies of finite sets and algebraic curves. Compos. Math. 67, 301–314 (1988)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Harris, J., Mumford, D.: On the Kodaira dimension of \(\overline{\cal M}_g\). Invent. Math. 67, 23–88 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Huybrechts, D.: Lectures on \(K3\) surfaces.
  20. 20.
    Kemeny, M.: The moduli of singular curves on K3 surfaces. J. de Mathematiqes Pures et Appliquees. arXiv:1401.1047 (to appear)
  21. 21.
    Koh, J., Stillman, M.: Linear syzygies and line bundles on an algebraic curve. J. Algebra 125, 120–132 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lazarsfeld, R.: Brill–Noether–Petri without degenerations. J. Differ. Geom. 23, 299–307 (1986)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Lazarsfeld, R.: A Sampling of Vector Bundle Techniques in the Study of Linear Series, Lectures on Riemann Surfaces (Trieste, 1987), World Scientific, pp. 500–559Google Scholar
  24. 24.
    Mayer, A.: Families of \(K3\) surfaces. Nagoya Math. J. 48, 1–17 (1972)MathSciNetGoogle Scholar
  25. 25.
    Schreyer, F.-O.: Syzygies of canonical curves and special linear series. Math. Ann. 275, 105–137 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Voisin, C.: Green’s generic syzygy conjecture for curves of even genus lying on a \(K3\) surface. J. Eur. Math. Soc. 4, 363–404 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Voisin, C.: Green’s canonical syzygy conjecture for generic curves of odd genus. Compos. Math. 141, 1163–1190 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut für MathematikHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations