Inventiones mathematicae

, Volume 202, Issue 1, pp 427–479 | Cite as

Equidistribution from fractal measures

Article

Abstract

We give a fractal-geometric condition for a measure on \([0,1]\) to be supported on points \(x\) that are normal in base \(n\), i.e. such that \(\{n^kx\}_{k\in \mathbb {N}}\) equidistributes modulo 1. This condition is robust under \(C^1\) coordinate changes, and it applies also when \(n\) is a Pisot number rather than an integer. As applications we obtain new results (and strengthen old ones) about the prevalence of normal numbers in fractal sets, and new results on measure rigidity, specifically completing Host’s theorem to multiplicatively independent integers and proving a Rudolph-Johnson-type theorem for certain pairs of beta transformations.

Mathematics Subject Classification

11K16 11A63 28A80 28D05 

References

  1. 1.
    Aspenberg, M., Ekström, F., Persson, T., Schmeling, J.: On the asymptotics of the scenery flow. http://arxiv.org/abs/1309.1619 (2013)
  2. 2.
    Barreira, Luis: Nonadditive thermodynamic formalism: equilibrium and Gibbs measures. Discrete Contin. Dyn. Syst. 16(2), 279–305 (2006)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bedford, Tim, Fisher, Albert M.: Ratio geometry, rigidity and the scenery process for hyperbolic Cantor sets. Ergodic Theory Dyn. Syst. 17(3), 531–564 (1997)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bertrand, A.: Développements en base de Pisot et répartition modulo \(1\). C. R. Acad. Sci. Paris Sér. A-B 285(6), A419–A421 (1977)MathSciNetGoogle Scholar
  5. 5.
    Bertrand, A.: Répartition modulo \(1\) et développement en base \(\theta \). C. R. Acad. Sci. Paris Sér. A-B 289(1), A1–A4 (1979)MathSciNetGoogle Scholar
  6. 6.
    Billingsley, P.: Convergence of Probability Measures. Wiley Series in Probability and Statistics: Probability and Statistics, 2nd edn. A Wiley-Interscience Publication, John Wiley & Sons Inc, New York (1999)CrossRefGoogle Scholar
  7. 7.
    Blanchard, F.: \(\beta \)-expansions and symbolic dynamics. Theoret. Comput. Sci. 65(2), 131–141 (1989)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Broderick, R., Bugeaud, Y., Fishman, L., Kleinbock, D., Weiss, B.: Schmidt’s game, fractals, and numbers normal to no base. Math. Res. Lett. 17(2), 307–321 (2010)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Brown, G., Moran, W., Pearce, C.E.M.: Riesz products and normal numbers. J. London Math. Soc. 32(1), 12–18 (1985)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Brown, G., Moran, W., Pearce, C.E.M.: Riesz products, Hausdorff dimension and. Math. Proc. Cambridge Philos. Soc. 101(3), 529–540 (1987)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Brown, G., Moran, W., Pollington, A.D.: Normality to noninteger bases. C. R. Acad. Sci. Paris Sér. I Math. 316(12), 1241–1244 (1993)MATHMathSciNetGoogle Scholar
  12. 12.
    Bugeaud, Y.: Distribution Modulo one and Diophantine Approximation, vol. 193 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  13. 13.
    Cassels, J.W.S.: On a problem of Steinhaus about normal numbers. Colloq. Math. 7, 95–101 (1959)MATHMathSciNetGoogle Scholar
  14. 14.
    Davenport, H., Erdős, P., LeVeque, W.J.: On Weyl’s criterion for uniform distribution. Michigan Math. J. 10, 311–314 (1963)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Einsiedler, M., Fishman, L., Shapira, U.: Diophantine approximations on fractals. Geom. Funct. Anal. 21(1), 14–35 (2011)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Manfred, E., Thomas, W.: Ergodic theory with a view towards number theory, vol. 259 of Graduate Texts in Mathematics. Springer-Verlag London Ltd., London (2011)Google Scholar
  17. 17.
    Falconer, K.J.: Hausdorff dimension and the exceptional set of projections. Mathematika 29(1), 109–115 (1982)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Falconer, K.: Techniques in Fractal Geometry. John Wiley & Sons Ltd., Chichester (1997)MATHGoogle Scholar
  19. 19.
    Falconer, K.: Fractal Geometry, Mathematical Foundations and Applications, 2nd edn. John Wiley & Sons Inc, Hoboken (2003)MATHCrossRefGoogle Scholar
  20. 20.
    Feldman, J., Smorodinsky, M.: Normal numbers from independent processes. Ergodic Theory Dyn. Syst. 12(4), 707–712 (1992)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. John Wiley & Sons Inc., New York (1971)MATHGoogle Scholar
  22. 22.
    Furstenberg, H.: Intersections of Cantor sets and transversality of semigroups. In: Problems in Analysis (Sympos. Salomon Bochner, Princeton Univ., Princeton, N.J., 1969), pp. 41–59. Princeton Univ. Press, Princeton (1970)Google Scholar
  23. 23.
    Furstenberg, H.: Ergodic fractal measures and dimension conservation. Ergodic Theory Dyn. Syst. 28(2), 405–422 (2008)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Adriano, M.: Arithmetic properties of Bernoulli convolutions. Trans. Am. Math. Soc. 102, 409–432 (1962)MATHCrossRefGoogle Scholar
  25. 25.
    Gavish, M.: Measures with uniform scaling scenery. Ergodic Theory Dyn. Syst. 31(1), 33–48 (2011)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Hochman, M.: Geometric rigidity of times-\(m\) invariant measures. J. Eur. Math. Soc. 14(5), 1539–1563 (2012)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Hochman, M.: Dynamics on fractals and fractal distributions. http://arxiv.org/abs/1008.3731v2 (2013)
  28. 28.
    Hochman, M.: On self-similar sets with overlaps and inverse theorems for entropy. Ann. Math. 180(2), 773–822 (2014)MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Hochman, M., Shmerkin, P.: Local entropy averages and projections of fractal measures. Ann. Math. 175(3), 1001–1059 (2012)MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Hofbauer, F.: \(\beta \)-shifts have unique maximal measure. Monatsh. Math. 85(3), 189–198 (1978)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Host, B.: Nombres normaux, entropie, translations. Israel J. Math. 91(1–3), 419–428 (1995)MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Hunt, B.R., Kaloshin, V.Y.: How projections affect the dimension spectrum of fractal measures. Nonlinearity 10(5), 1031–1046 (1997)MATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Johnson, A.S.A.: Measures on the circle invariant under multiplication by a nonlacunary subsemigroup of the integers. Israel J. Math. 77(1–2), 211–240 (1992)MATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Kaufman, R.: Continued fractions and Fourier transforms. Mathematika 27(2), 262–267 (1981)CrossRefGoogle Scholar
  35. 35.
    Robert, K.: On Bernoulli convolutions. In: Conference in Modern Analysis and Probability (New Haven, Conn., 1982), vol. 26 of Contemp. Math., pp. 217–222. Amer. Math. Soc., Providence (1984)Google Scholar
  36. 36.
    Lalley, S.P.: Random series in powers of algebraic integers: Hausdorff dimension of the limit distribution. J. London Math. Soc. 57(3), 629–654 (1998)MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Lindenstrauss, E.: \(p\)-adic foliation and equidistribution. Israel J. Math. 122, 29–42 (2001)MATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Lindenstrauss, L.: Rigidity of multiparameter actions. Israel J. Math. 149, 199–226 (2005)MATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Lyons, R.: Strong laws of large numbers for weakly correlated random variables. Michigan Math. J. 35(3), 353–359 (1988)MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Mattila, F.: Geometry of Sets and Measures in Euclidean Spaces, vol. 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  41. 41.
    Meiri, D.: Entropy and uniform distribution of orbits in \(T^d\). Israel Journal of Mathematics 105, 153–183 (1998)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Moran, W., Pollington, A.D.: Metrical results on normality to distinct bases. J. Number Theory 54(2), 180–189 (1995)MATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    Mörters, P., Preiss, D.: Tangent measure distributions of fractal measures. Math. Ann. 312(1), 53–93 (1998)MATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Parry, W.: On the \(\beta \)-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11, 401–416 (1960)MATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    Peres, Y., Shmerkin, P.: Resonance between Cantor sets. Ergodic Theory Dyn. Syst. 29(1), 201–221 (2009)MATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    Pollington, A.D.: The Hausdorff dimension of a set of normal numbers. Pacific J. Math. 95(1), 193–204 (1981)MATHMathSciNetCrossRefGoogle Scholar
  47. 47.
    Pollington, A.D.: The Hausdorff dimension of a set of normal numbers. II. J. Austral. Math. Soc. Ser. A 44(2), 259–264 (1988)MATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    Queffélec, M., Ramaré, O.: Analyse de Fourier des fractions continues à quotients restreints. Enseign. Math. 49(3–4), 335–356 (2003)MATHMathSciNetGoogle Scholar
  49. 49.
    Rényi, A.: Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar 8, 477–493 (1957)MATHMathSciNetCrossRefGoogle Scholar
  50. 50.
    Rudolph, D.J.: \(\times 2\) and \(\times 3\) invariant measures and entropy. Ergodic Theory Dyn. Syst 10(2), 395–406 (1990)MATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    Schmidt, W.M.: On normal numbers. Pacific J. Math. 10, 661–672 (1960)MATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    Sidorov, N.: Arithmetic dynamics. In: Topics in Dynamics and Ergodic Theory, vol. 310 of London Math. Soc. Lecture Note Ser., pp. 145–189. Cambridge Univ. Press, Cambridge (2003)Google Scholar
  53. 53.
    Sullivan, D.: Differentiable structures on fractal-like sets, determined by intrinsic scaling functions on dual Cantor sets. In: The Mathematical Heritage of Hermann Weyl (Durham, NC, 1987), vol. 48 of Proc. Sympos. Pure Math., pp. 15–23. Amer. Math. Soc., Providence (1988)Google Scholar
  54. 54.
    Walters, P.: An Introduction to Ergodic Theory, vol. 79 of Graduate Texts in Mathematics. Springer-Verlag, New York (1982)CrossRefGoogle Scholar
  55. 55.
    Zähle, U.: Self-similar random measures. I. Notion, carrying Hausdorff dimension, and hyperbolic distribution. Probab. Theory Related Fields 80(1), 79–100 (1988)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Einstein Institute of MathematicsJerusalemIsrael
  2. 2.Department of Mathematics, Faculty of Engineering and Physical SciencesUniversity of SurreyGuildfordUK
  3. 3.Department of Mathematics and StatisticsTorcuato Di Tella UniversityBuenos AiresArgentina

Personalised recommendations