Inventiones mathematicae

, Volume 200, Issue 3, pp 979–1014 | Cite as

Supersingular K3 surfaces are unirational

  • Christian LiedtkeEmail author


We show that supersingular K3 surfaces in characteristic \(p\ge 5\) are related by purely inseparable isogenies. This implies that they are unirational, which proves conjectures of Artin, Rudakov, Shafarevich, and Shioda. As a byproduct, we exhibit the moduli space of rigidified K3 crystals as an iterated \({{\mathbb P}}^1\)-bundle over \({{\mathbb F}}_{p^2}\). To complete the picture, we also establish Shioda–Inose type isogeny theorems for K3 surfaces with Picard rank \(\rho \ge 19\) in positive characteristic.

Mathematics Subject Classification

14J28 14G17 14M20 14D22 



It is a pleasure for me to thank Xi Chen, Igor Dolgachev, Gerard van der Geer, Brendan Hassett, Daniel Huybrechts, Toshiyuki Katsura, Frans Oort, Matthias Schütt, Tetsuji Shioda, Burt Totaro for discussions, comments, and pointing out inaccuracies. I especially thank Olivier Benoist and Max Lieblich for pointing out mistakes in earlier versions of Sect. 3, and for helping me to fix them. Finally, I thank the referee for careful proof-reading, for pointing out inaccuracies, and for helping me to improve the whole exposition. I gratefully acknowledge funding from DFG via Transregio SFB 45, as part of this article was written while staying at Bonn university.


  1. 1.
    Artin, M.: Algebraization of Formal Moduli: I, Global Analysis (papers in honor of K. Kodaira). University of Tokyo Press, Tokyo, pp. 21–71 (1969)Google Scholar
  2. 2.
    Artin, M.: Supersingular K3 surfaces. Ann. Sci. École Norm. Sup. 4(7), 543–567 (1974)MathSciNetGoogle Scholar
  3. 3.
    Artin, M.: Algebraic construction of Brieskorn’s resolutions. J. Algebra 29, 330–348 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Artin, M., Mazur, B.: Formal groups arising from algebraic varieties. Ann. Sci. École Norm. Sup. 10, 87–131 (1977)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Artin, M., Swinnerton-Dyer, H.P.F.: The Shafarevich-Tate conjecture for pencils of elliptic curves on K3 surfaces. Invent. Math. 20, 249–266 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bombieri, E., Mumford, D.: Enriques’ classification of surfaces in char. p, III. Invent. Math. 35, 197–232 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Charles, F.: The Tate conjecture for K3 surfaces over finite fields. Invent. Math. 194, 119–145 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chen, X.: Self rational maps of K3 surfaces. arXiv:1008.1619 (2010)
  9. 9.
    Cossec, F.R., Dolgachev, I.V.: Enriques Surfaces I, Progress in Mathematics, vol. 76. Birkhäuser, Basel (1989)Google Scholar
  10. 10.
    Conrad, B., Lieblich, M., Olsson, M., Martin: Nagata compactification for algebraic spaces. J. Inst. Math. Jussieu 11, 747–814 (2012)Google Scholar
  11. 11.
    Cynk, S., van Straten, D.: Small resolutions and non-liftable Calabi–Yau threefolds. Manuscr. Math. 130, 233–249 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Deligne, P.: Relèvement des surfaces K3 en caractéristique nulle, Lecture Notes in Math. 868, Algebraic surfaces (Orsay, 1976–78), pp. 58–79. Springer, New York (1981)Google Scholar
  13. 13.
    Dolgachev, I.V., Keum, J.: Finite groups of symplectic automorphisms of K3 surfaces in positive characteristic. Ann. Math. 2(169), 269–313 (2009)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Ekedahl, T.: Foliations and inseparable morphisms, Algebraic geometry, Bowdoin 1985, Proc. Sympos. Pure Math., vol. 46, pp. 139–149 (1987)Google Scholar
  15. 15.
    Ekedahl, T., van der Geer, G.: Cycle Classes on the moduli of K3 surfaces in positive characteristic. arXiv:1104.3024 (2011)
  16. 16.
    Huybrechts, D.: Compact hyperkähler manifolds, Calabi–Yau manifolds and related geometries (Nordfjordeid, 2001), pp. 161–225. Springer, New York (2003)Google Scholar
  17. 17.
    Igusa, J.I.: Betti and Picard numbers of abstract algebraic surfaces. Proc. Natl. Acad. Sci. USA 46, 724–726 (1960)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Illusie, L.: Complexe de de Rham–Witt et cohomologie cristalline. Ann. Sci. École Norm. Sup. 12, 501–661 (1979)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Illusie, L.: Grothendieck’s existence theorem in formal geometry, Math. Surveys Monogr., vol. 123. Fundamental algebraic geometry, pp. 179–233. AMS, Providence (2005)Google Scholar
  20. 20.
    Inose, H.: Defining equations of singular K3 surfaces and a notion of isogeny. In: Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), pp. 495–502. Kinokuniya Book Store (1978)Google Scholar
  21. 21.
    Ito, H., Liedtke, C.: Elliptic K3 surfaces with \(p^n\)-torsion sections. J. Algebr. Geom. 22, 105–139 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Jang, J.: Néron–Severi group preserving lifting of K3 surfaces and applications. arXiv:1306.1596 (2013)
  23. 23.
    Katsura, T.: Generalized Kummer surfaces and their unirationality in characteristic \(p\). J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34, 1–41 (1987)Google Scholar
  24. 24.
    Kleiman, S.L.: Toward a numerical theory of ampleness. Ann. Math. 2(84), 293–344 (1966)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Kleiman, S.L.: The Picard scheme, Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, pp. 235–321. AMS (2005)Google Scholar
  26. 26.
    Kondo, S., Shimada, I.: On certain duality of Néron-Severi lattices of supersingular K3 surfaces and its application to generic supersingular K3 surfaces. arXiv:1212.0269 (2012)
  27. 27.
    Lieblich, M., Maulik, D.: A note on the cone conjecture for K3 surfaces in positive characteristic. arXiv:1102.3377 (2011)
  28. 28.
    Lieblich, M.: On the Ubiquity of Twisted Sheaves, Birational Geometry, Rational Curves, and Arithmetic, pp. 205–227. Springer, New York (2013)Google Scholar
  29. 29.
    Lieblich, M.: On the Unirationality of Supersingular K3 Surfaces. arXiv:1403.3073 (2014)
  30. 30.
    Liedtke, C.: Algebraic surfaces of general type with small \(c_1^2\) in positive characteristic. Nagoya Math. J. 191, 111–134 (2008)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Ma, S.: On K3 surfaces which dominate Kummer surfaces. Proc. Am. Math. Soc. 141, 131–137 (2013)CrossRefzbMATHGoogle Scholar
  32. 32.
    Madapusi Pera, K.: The Tate conjecture for K3 surfaces in odd characteristic. arXiv:1301.6326 (2013)
  33. 33.
    Markman, E.: Lagrangian fibrations of holomorphic-symplectic varieties of \({\rm K3}^{[n]}\)-type. arXiv:1301.6584 (2013)
  34. 34.
    Matsusaka, T., Mumford, D.: Two fundamental theorems on deformations of polarized varieties. Am. J. Math. 86, 668–684 (1964)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Maulik, D.: Supersingular K3 surfaces for large primes. arXiv:1203.2889 (2012)
  36. 36.
    Morrison, D.R.: On K3 surfaces with large Picard number. Invent. Math. 75, 105–121 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Morrison, D.R.: Isogenies between algebraic surfaces with geometric genus one. Tokyo J. Math. 10, 179–187 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Mukai, S.: On the moduli space of bundles on K3 surfaces. I, Vector bundles on algebraic varieties (Bombay: 341–413). Tata Inst. Fund. Res. Stud. Math. 11, 1987 (1984)Google Scholar
  39. 39.
    Nikulin, V.V.: Finite automorphism groups of Kähler K3 surfaces. Trans. Moscow Math. Soc. 38, 75–135 (1980)MathSciNetGoogle Scholar
  40. 40.
    Nikulin, V.V.: On correspondences between surfaces of K3 type. Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987) [translation in Math. USSR-Izv. 30, 375–383 (1988)]Google Scholar
  41. 41.
    Nikulin, V.V.: On rational maps between K3 surfaces, Constantin Carathéodory: an international tribute, vols. I, II, pp. 964–995. World Sci. Publ. (1991)Google Scholar
  42. 42.
    Nygaard, N.O.: The Tate conjecture for ordinary K3 surfaces over finite fields. Invent. Math. 74, 213–237 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Ogus, A.: Supersingular K3 crystals, Journées de Géométrie Algébrique de Rennes, Vol. II. Astérisque 64, 3–86 (1979)zbMATHMathSciNetGoogle Scholar
  44. 44.
    Ogus, A.: A Crystalline Torelli Theorem for Supersingular K3 Surfaces, Arithmetic and Geometry, vol. II, Progress in Mathematics, vol. 36, pp. 361–394. Birkhäuser, Basel (1983)Google Scholar
  45. 45.
    Pho, D.T., Shimada, I.: Unirationality of certain supersingular K3 surfaces in characteristic 5. Manuscr. Math. 121, 425–435 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Rudakov, A.N., Shafarevich, I.R.: Supersingular K3 surfaces over fields of characteristic 2. Izv. Akad. Nauk SSSR 42, 848–869 (1978) [Math. USSR, Izv. 13, 147–165 (1979)]Google Scholar
  47. 47.
    Rudakov, A.N., Shafarevich, I.R.: Surfaces of Type K3 Over Fields of Finite Characteristic, Current Problems in Mathematics, vol. 18, pp. 115–207. Akad. Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, Nauk SSSR (1981)Google Scholar
  48. 48.
    Rudakov, A.N., Shafarevich, I.R.: On the degeneration of K3 surfaces over fields of finite characteristic. Math. USSR Izv. 18, 561–574 (1982)CrossRefzbMATHGoogle Scholar
  49. 49.
    Shafarevich, I.R.: Le théorème de Torelli pour les surfaces algébriques de type K3, ICM Nice 1970, vol. 1, pp. 413–417. Gauthier-Villars (1971)Google Scholar
  50. 50.
    Shioda, T.: Algebraic cycles on certain K3 surfaces in characteristic p, Manifolds-Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973), pp. 357–364. University of Tokyo Press, Tokyo (1975)Google Scholar
  51. 51.
    Shioda, T.: An example of unirational surfaces in characteristic p. Math. Ann. 211, 233–236 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    Shioda, T.: Some results on unirationality of algebraic surfaces. Math. Ann. 230, 153–168 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    Shioda, T.: Supersingular K3 Surfaces. Algebraic Geometry, Springer Lecture Notes, vol. 732, pp. 564–591 (1979)Google Scholar
  54. 54.
    Shioda, T., Inose, H.: On Singular K3 Surfaces, Complex Analysis and Algebraic Geometry, pp. 119–136. Iwanami Shoten, Tokyo (1977)Google Scholar
  55. 55.
    Tate, J.: Algebraic Cycles and Poles of Zeta Functions, Arithmetic Algebraic Geometry, Harper and Row, pp. 93–110 (1965)Google Scholar
  56. 56.
    Verbitsky, M.: Degenerate twistor spaces for hyperkähler manifolds. arXiv:1311.5073 (2013)
  57. 57.
    Zink, T.: Cartiertheorie kommutativer formaler Gruppen, Teubner (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.TU München, Zentrum Mathematik, M11Garching bei MünchenGermany

Personalised recommendations