Abstract
We characterize the measures on \(\mathbb {R}\) which have both their support and spectrum uniformly discrete. A similar result is obtained in \(\mathbb {R}^n\) for positive measures.
Similar content being viewed by others
References
Allouche, J.-P., Meyer, Y.: Quasicrystals, model sets, and automatic sequences. C. R. Phys. 15, 6–11 (2014)
Baake, M., Lenz, D., Moody, R.: Characterization of model sets by dynamical systems. Ergod. Theory Dyn. Syst. 27, 341–382 (2007)
Bombieri, E., Taylor, J. E.: Quasicrystals, tilings, and algebraic number theory: some preliminary connections. The legacy of Sonya Kovalevskaya. Contemp. Math. 64, 241–264 (1987) (American Mathematical Society, Providence, RI)
Cahn, J. W., Taylor, J. E.: An introduction to quasicrystals. The legacy of Sonya Kovalevskaya. Contemp. Math. 64, 265–286 (1987) (American Mathematical Society, Providence, RI)
Córdoba, A.: La formule sommatoire de Poisson. C. R. Acad. Sci. Paris Sér. I Math. 306, 373–376 (1988)
Córdoba, A.: Dirac combs. Lett. Math. Phys. 17, 191–196 (1989)
Dyson, F.: Birds and frogs. Notices Am. Math. Soc. 56, 212–223 (2009)
Guinand, A.P.: Concordance and the harmonic analysis of sequences. Acta Math. 101, 235–271 (1959)
Gurarii, V. P.: Group methods of commutative harmonic analysis. Current problems in mathematics. In: Fundamental Directions, Vol. 25 (Russian). Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow (English translation in Commutative harmonic analysis II, edited by V. P. Havin and N. K. Nikolski, Springer-Verlag, Berlin, 1998)
Kahane, J.-P., Mandelbrojt, S.: Sur l’équation fonctionnelle de Riemann et la formule sommatoire de Poisson. Ann. Sci. École Norm. Sup. 75, 57–80 (1958)
Kolountzakis, M.N., Lagarias, J.C.: Structure of tilings of the line by a function. Duke Math. J. 82, 653–678 (1996)
Lagarias, J.C.: Meyer’s concept of quasicrystal and quasiregular sets. Commun. Math. Phys. 179, 365–376 (1996)
Lagarias, J. C.: Mathematical quasicrystals and the problem of diffraction. Directions in mathematical quasicrystals. In: CRM Monograph Series, vol. 13, pp. 61–93. American Mathematical Society, Providence (2000)
Landau, H.J.: Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math. 117, 37–52 (1967)
Lev, N., Olevskii, A.: Measures with uniformly discrete support and spectrum. C. R. Math. Acad. Sci. Paris 351, 613–617 (2013)
Matei, B., Meyer, Y.: Simple quasicrystals are sets of stable sampling. Complex Var. Elliptic Equ. 55, 947–964 (2010)
Meyer, Y.: Nombres de Pisot, nombres de Salem et analyse harmonique. In: Lecture Notes in Mathematics, vol. 117. Springer-Verlag, New York (1970)
Meyer, Y.: Algebraic Numbers and Harmonic Analysis. North-Holland, Amsterdam (1972)
Meyer, Y.: Quasicrystals, diophantine approximation and algebraic numbers. In: Beyond Quasicrystals (Les Houches, 1994), pp. 3–16. Springer, Berlin (1995)
Mitkovski, M., Poltoratski, A.: Pólya sequences, Toeplitz kernels and gap theorems. Adv. Math. 224, 1057–1070 (2010)
Moody, R. V.: Meyer sets and their duals. The mathematics of long-range aperiodic order (Waterloo, ON, 1995). In: NATO Advanced Science Institute Series C: Mathematical and Physical Sciences, vol. 489, pp. 403–441. Kluwer Academic Publishers, Dordrecht (1997)
Nitzan, S., Olevskii, A.: Revisiting Landau’s density theorems for Paley–Wiener spaces. C. R. Math. Acad. Sci. Paris 350, 509–512 (2012)
Olevskii, A., Ulanovskii, A.: Universal sampling and interpolation of band-limited signals. Geom. Funct. Anal. 18, 1029–1052 (2008)
Olevskii, A., Ulanovskii, A.: On multi-dimensional sampling and interpolation. Anal. Math. Phys. 2, 149–170 (2012)
Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill, New York (1991)
Author information
Authors and Affiliations
Corresponding author
Additional information
N. Lev and A. Olevskii are partially supported by their respective Israel Science Foundation grants.
Rights and permissions
About this article
Cite this article
Lev, N., Olevskii, A. Quasicrystals and Poisson’s summation formula. Invent. math. 200, 585–606 (2015). https://doi.org/10.1007/s00222-014-0542-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00222-014-0542-z