Skip to main content
Log in

Quasicrystals and Poisson’s summation formula

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We characterize the measures on \(\mathbb {R}\) which have both their support and spectrum uniformly discrete. A similar result is obtained in \(\mathbb {R}^n\) for positive measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allouche, J.-P., Meyer, Y.: Quasicrystals, model sets, and automatic sequences. C. R. Phys. 15, 6–11 (2014)

    Article  Google Scholar 

  2. Baake, M., Lenz, D., Moody, R.: Characterization of model sets by dynamical systems. Ergod. Theory Dyn. Syst. 27, 341–382 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bombieri, E., Taylor, J. E.: Quasicrystals, tilings, and algebraic number theory: some preliminary connections. The legacy of Sonya Kovalevskaya. Contemp. Math. 64, 241–264 (1987) (American Mathematical Society, Providence, RI)

  4. Cahn, J. W., Taylor, J. E.: An introduction to quasicrystals. The legacy of Sonya Kovalevskaya. Contemp. Math. 64, 265–286 (1987) (American Mathematical Society, Providence, RI)

  5. Córdoba, A.: La formule sommatoire de Poisson. C. R. Acad. Sci. Paris Sér. I Math. 306, 373–376 (1988)

  6. Córdoba, A.: Dirac combs. Lett. Math. Phys. 17, 191–196 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dyson, F.: Birds and frogs. Notices Am. Math. Soc. 56, 212–223 (2009)

    MATH  MathSciNet  Google Scholar 

  8. Guinand, A.P.: Concordance and the harmonic analysis of sequences. Acta Math. 101, 235–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gurarii, V. P.: Group methods of commutative harmonic analysis. Current problems in mathematics. In: Fundamental Directions, Vol. 25 (Russian). Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow (English translation in Commutative harmonic analysis II, edited by V. P. Havin and N. K. Nikolski, Springer-Verlag, Berlin, 1998)

  10. Kahane, J.-P., Mandelbrojt, S.: Sur l’équation fonctionnelle de Riemann et la formule sommatoire de Poisson. Ann. Sci. École Norm. Sup. 75, 57–80 (1958)

    MATH  MathSciNet  Google Scholar 

  11. Kolountzakis, M.N., Lagarias, J.C.: Structure of tilings of the line by a function. Duke Math. J. 82, 653–678 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lagarias, J.C.: Meyer’s concept of quasicrystal and quasiregular sets. Commun. Math. Phys. 179, 365–376 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lagarias, J. C.: Mathematical quasicrystals and the problem of diffraction. Directions in mathematical quasicrystals. In: CRM Monograph Series, vol. 13, pp. 61–93. American Mathematical Society, Providence (2000)

  14. Landau, H.J.: Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math. 117, 37–52 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lev, N., Olevskii, A.: Measures with uniformly discrete support and spectrum. C. R. Math. Acad. Sci. Paris 351, 613–617 (2013)

    Article  MathSciNet  Google Scholar 

  16. Matei, B., Meyer, Y.: Simple quasicrystals are sets of stable sampling. Complex Var. Elliptic Equ. 55, 947–964 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Meyer, Y.: Nombres de Pisot, nombres de Salem et analyse harmonique. In: Lecture Notes in Mathematics, vol. 117. Springer-Verlag, New York (1970)

  18. Meyer, Y.: Algebraic Numbers and Harmonic Analysis. North-Holland, Amsterdam (1972)

    MATH  Google Scholar 

  19. Meyer, Y.: Quasicrystals, diophantine approximation and algebraic numbers. In: Beyond Quasicrystals (Les Houches, 1994), pp. 3–16. Springer, Berlin (1995)

  20. Mitkovski, M., Poltoratski, A.: Pólya sequences, Toeplitz kernels and gap theorems. Adv. Math. 224, 1057–1070 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Moody, R. V.: Meyer sets and their duals. The mathematics of long-range aperiodic order (Waterloo, ON, 1995). In: NATO Advanced Science Institute Series C: Mathematical and Physical Sciences, vol. 489, pp. 403–441. Kluwer Academic Publishers, Dordrecht (1997)

  22. Nitzan, S., Olevskii, A.: Revisiting Landau’s density theorems for Paley–Wiener spaces. C. R. Math. Acad. Sci. Paris 350, 509–512 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Olevskii, A., Ulanovskii, A.: Universal sampling and interpolation of band-limited signals. Geom. Funct. Anal. 18, 1029–1052 (2008)

    Article  MathSciNet  Google Scholar 

  24. Olevskii, A., Ulanovskii, A.: On multi-dimensional sampling and interpolation. Anal. Math. Phys. 2, 149–170 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nir Lev.

Additional information

N. Lev and A. Olevskii are partially supported by their respective Israel Science Foundation grants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lev, N., Olevskii, A. Quasicrystals and Poisson’s summation formula. Invent. math. 200, 585–606 (2015). https://doi.org/10.1007/s00222-014-0542-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-014-0542-z

Keywords

Navigation