Advertisement

Inventiones mathematicae

, Volume 200, Issue 3, pp 761–847 | Cite as

Finite time blow-up and condensation for the bosonic Nordheim equation

  • M. Escobedo
  • J. J. L. Velázquez
Article

Abstract

The homogeneous bosonic Nordheim equation is a kinetic equation describing the dynamics of the distribution of particles in the space of moments for a homogeneous, weakly interacting, quantum gas of bosons. We show the existence of classical solutions of the homogeneous bosonic Nordheim equation that blow up in finite time. We also prove finite time condensation for a class of weak solutions of the kinetic equation.

Notes

Acknowledgments

This work has been supported by DGES Grant 2011-29306-C02-00, Basque Government Grant IT641-13, the Hausdorff Center for Mathematics of the University of Bonn and the Collaborative Research Center The Mathematics of Emergent Effects (DFG SFB 1060, University of Bonn). The authors thank the hospitality of the Isaac Newton Institute of the University of Cambridge where this work was begun.

References

  1. 1.
    Baier, R., Stockamp, T.: Kinetic equations for Bose–Einstein condensates from the \(2PI\) effective action (2004). arxiv:hep-ph/0412310
  2. 2.
    Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010)CrossRefGoogle Scholar
  3. 3.
    Carleman, T.: Problèmes mathématiques dans la théorie cinétique des gazs. Publ. Sci. Inst. Mittag-Leffler, vol. 2. Almqvist & Wiksells Boktryckeri Ab, Uppsala (1957)Google Scholar
  4. 4.
    Carleman, T.: Sur la théorie de l’équation intégro-differentielle de Boltzmann. Acta Math. 60, 91–146 (1933)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Dunford, N., Schwartz, J.T.: Linear Operators, Part I. General Theory. Wiley, New York (1963)Google Scholar
  6. 6.
    Eckern, U.: Relaxation processes in a condensed bose gas. J. Low Temp. Phys. 54, 333–359 (1984)CrossRefGoogle Scholar
  7. 7.
    Escobedo, M., Mischler, S., Velázquez, J.J.L.: On the fundamental solution of a linearized Uehling Uhlenbeck equation. Arch. Ration. Mech. Anal. 186(2), 309–349 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Escobedo, M., Mischler, S., Velázquez, J.J.L.: Singular solutions for the Uehling Uhlenbeck equation. Proc. R. Soc. Edinb. 138A, 67–107 (2008)Google Scholar
  9. 9.
    Frechet, M.: Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo 22(1), 1–72 (1906)CrossRefzbMATHGoogle Scholar
  10. 10.
    Gardiner, C.W., Lee, M.D., Ballagh, R.J., Davis, M.J., Zoller, P.: Quantum kinetic theory of condensate growth: comparison of experiment and theory. Phys. Rev. Lett. 81, 5266–5269 (1998)CrossRefGoogle Scholar
  11. 11.
    Huang, K.: Statistical Mechanics. Wiley, New York (1963)Google Scholar
  12. 12.
    Huang, K., Yang, C.N.: Quantum-mechanical many-body problem with hard-sphere interaction. Phys. Rev. 105(3), 765–767 (1957)CrossRefGoogle Scholar
  13. 13.
    Imamovič-Tomasovič, M., Griffin, A.: Coupled Hartree–Fock–Bogoliubov kinetic equations for a trapped bose gas. Phys. Rev. A 60, 494–503 (1999)CrossRefGoogle Scholar
  14. 14.
    Josserand, C., Pomeau, Y., Rica, S.: Self-similar singularities in the kinetics of condensation. J. Low Temp. Phys. 145, 231–265 (2006)CrossRefGoogle Scholar
  15. 15.
    Kikuchi, S., Nordheim, L.W.: Über die kinetische Fundamentalgleichung in der Quantenstatistik. Zeitschrift für Physik A Hadrons Nuclei 60, 652–662 (1930)zbMATHGoogle Scholar
  16. 16.
    Lacaze, R., Lallemand, P., Pomeau, Y., Rica, S.: Dynamical formation of a Bose–Einstein condensate. Phys. D 152–153, 779–786 (2001)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Levich, E., Yakhot, V.: Kinetics of phase transition in ideal and weakly interacting Bose gas. J. Low Temp. Phys. 27, 107–124 (1977)CrossRefGoogle Scholar
  18. 18.
    Levich, E., Yakhot, V.: Time development of coherent and superfluid properties in the course of a \(\lambda \)-transition. J. Phys. A Math. Gener. 11, 2237–2254 (1978)CrossRefGoogle Scholar
  19. 19.
    Lu, X.: On isotropic distributional solutions to the Boltzmann equation for Bose–Einstein particles. J. Stat. Phys. 116, 1597–1649 (2004)CrossRefzbMATHGoogle Scholar
  20. 20.
    Lu, X.: The Boltzmann equation for Bose–Einstein particles: velocity concentration and convergence to equilibrium. J. Stat. Phys. 119, 1027–1067 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Lu, X.: The Boltzmann equation for Bose–Einstein particles: condensation in finite time. J. Stat. Phys. 150, 1138–1176 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Mischler, S., Wennberg, B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré Anal. Non Linéare 16, 467–501 (1999)Google Scholar
  23. 23.
    Nordheim, L.W.: On the kinetic method in the new statistics and its application in the electron theory of conductivity. Proc. R. Soc. Lond. A 119, 689–698 (1928)CrossRefzbMATHGoogle Scholar
  24. 24.
    Povzner, A.J.: The Boltzmann equation in the kinetic theory of gases. Am. Math. Soc. Transl. 47(2), 193–214 (1965)zbMATHGoogle Scholar
  25. 25.
    Proukakis, N.P., Burnett, K., Stoof, H.T.C.: Microscopic treatment of binary interactions in the nonequilibrium dynamics of partially Bose condensed trapped gases. Phys. Rev. A 57, 1230–1247 (1998)CrossRefGoogle Scholar
  26. 26.
    Pulvirenti, M.: The weak-coupling limit of large classical and quantum systems. In: International Congress of Mathematicians, vol. III, pp. 229–256 (2006)Google Scholar
  27. 27.
    Semikov, D.V., Tkachev, I.I.: Kinetics of Bose condensation. Phys. Rev. Lett. 74, 3093–3097 (1995)CrossRefGoogle Scholar
  28. 28.
    Semikov, D.V., Tkachev, I.I.: Condensation of Bosons in the kinetic regime. Phys. Rev. D 55(2), 489–502 (1997)CrossRefGoogle Scholar
  29. 29.
    Spohn, H.: Kinetics of the Bose–Einstein condensation. Phys. D Nonlinear Phenom. 239, 627–634 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Stoof, H.T.C.: Condensate formation in a Bose gas. In: Griffin, A., Snoke, D.W., Stringari, S. (eds.) Bose Einstein Condensation. Cambridge University Press, London (1994)Google Scholar
  31. 31.
    Svistunov, B.V.: Highly nonequilibrium Bose condensation in a weakly interacting gas. J. Moscow Phys. Soc. 1, 373–390 (1991)Google Scholar
  32. 32.
    Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. 1. Elsevier Science, London (2002)Google Scholar
  33. 33.
    Zaremba, E., Nikuni, T., Griffin, A.: Dynamics of trapped Bose gases at finite temperatures. J. Low Temp. Phys. 116, 277–345 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad del País Vasco UPV/EHUBilbaoSpain
  2. 2.Basque Center for Applied Mathematics (BCAM)BilbaoSpain
  3. 3.Institute of Applied MathematicsUniversity of BonnBonnGermany

Personalised recommendations