Skip to main content
Log in

A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry

  • Published:
Inventiones mathematicae Aims and scope

Abstract

For \(\phi \) a metric on the anticanonical bundle, \(-K_X\), of a Fano manifold \(X\) we consider the volume of \(X\)

$$\begin{aligned} \int _X e^{-\phi }. \end{aligned}$$

In earlier papers we have proved that the logarithm of the volume is concave along geodesics in the space of positively curved metrics on \(-K_X\). Our main result here is that the concavity is strict unless the geodesic comes from the flow of a holomorphic vector field on \(X\), even with very low regularity assumptions on the geodesic. As a consequence we get a simplified proof of the Bando–Mabuchi uniqueness theorem for Kähler–Einstein metrics. A generalization of this theorem to ‘twisted’ Kähler–Einstein metrics and some classes of manifolds that satisfy weaker hypotheses than being Fano is also given. We moreover discuss a generalization of the main result to other bundles than \(-K_X\), and finally use the same method to give a new proof of the theorem of Tian and Zhu on uniqueness of Kähler–Ricci solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bando, S., Mabuchi, T.: Uniqueness of Einstein Kähler metrics modulo connected group actions. Algebraic geometry, Sendai, 1985, 11–40. Advanced Studies in Pure Mathematics 10, North-Holland, Amsterdam (1987)

  2. Berman RAnalytic torsion, vortices and positive Ricci curvature. arXiv:1006.2988

  3. Berman, R.A.: Thermodynamical formalism for Monge–Ampere equations, Moser–Trudinger inequalities and Kähler–Einstein metrics. Adv. Math. 248, 1254–1297 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berman, R.J., Boucksom, S., Guedj, V., Zeriahi, A.: A variational approach to complex Monge–Ampere equations. Publ. Math. Inst. Hautes Études Sci. 117, 179–245 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berman, R.J., Boucksom, S., Eyssidieux, P.H., Guedj, V., Zeriahi, A.: Kähler–Ricci flow and Ricci iteration on log-Fano varieties. arXiv:1111.7158

  6. Berndtsson, B.: Curvature of vector bundles associated to holomorphic fibrations. Ann. Math. 169, 531–560 (2009). arXiv:math/0511225

  7. Berndtsson, B.: Positivity of direct image bundles and convexity on the space of Kähler metrics. J Differ. Geom. 81.3, 457–482 (2009)

    MathSciNet  Google Scholar 

  8. Berndtsson, B.: Strict and non strict positivity of direct image bundles. Math. Z. 269(3–4), 1201–1218 (2011). arXiv:1002.4797

  9. Blocki, Z., Kolodziej, S.: On regularization of plurisubharmonic functions on manifolds. Proc. Am. Math. Soc. 135(7), 2089–2093 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, X.X.: The space of Kähler metrics. J. Differ. Geom. 56(2), 189–234 (2000)

    MATH  Google Scholar 

  11. Darvas, T.: Morse theory and geodesics in the space of Kähler metrics. Proc. Am. Math. Soc. 142, 2775–2782 (2014). arXiv:1207.4465

  12. Demailly, J.-P.: Regularization of closed positive currents and intersection theory. J. Algebr. Geom. 1(3), 361–409 (1992)

    MATH  MathSciNet  Google Scholar 

  13. Donaldson, S.K.: Holomorphic discs and the complex Monge–Ampere equation. J. Symp. Geom. 1(2), 171–196 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Donaldson, S.K.: Symmetric spaces, Kähler geometry and Hamiltonian dynamics. In: Northern California Symplectic Geometry Seminar, volume 196 of Amer. Math. Soc. Transl. Ser. 2, pp. 13–33. American Mathematical Society, Providence, RI (1999)

  15. Donaldson, S.: K.Kähler metrics with cone singularities along a divisorEssays in mathematics and its applications, pp. 49–79. Springer, Heidelberg (2012). arXiv:1102.1196

  16. Donaldson, S.K.: Scalar curvature and projective embeddings. II. Q. J. Math. 56(3), 345–356 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gardner, R.J.: The Brunn–Minkowski inequality. BAMS 39, 355–405 (2002)

    Article  MATH  Google Scholar 

  18. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1994)

    Book  MATH  Google Scholar 

  19. Guedj, V., Zeriahi, A.: Dirichlet problem in domains of \({\mathbb{C}}^{n}\). In: Complex Monge–Ampere Equations and Geodesics in the Space of Kähler Metrics, SLN 2038 (2012)

  20. He, W.: \({\cal F}\)-Functional and geodesic stability. arXiv:1208.1020

  21. Hörmander, L.: An Introduction to Complex Analysis in Several Variables, 3rd edn. North Holland, Amsterdam (1990)

    MATH  Google Scholar 

  22. Iwasawa, K.: On some types of topological groups. Ann. Math. 50, 507–558 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lempert, L., Vivas, L.: Geodesics in the space of Kähler metrics. Duke Math. J. 162(7), 1369–138 (2013)

  24. Mabuchi, T.: Some symplectic geometry on compact Kähler manifolds. Osaka J. Math. 24, 227–252 (1987)

    MATH  MathSciNet  Google Scholar 

  25. Mabuchi, T.: \(K\)-energy maps integrating Futaki invariants. Tohoku Math. J. (2) 38(4), 575–593 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  26. Prekopa, A.: On logarithmic concave measures and functions. Acad. Sci. Math. (Szeged) 34, 335–343 (1973)

    MATH  MathSciNet  Google Scholar 

  27. Semmes, S.: Complex Monge–Ampère and symplectic manifolds. Am. J. Math. 114(3), 495–550 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Song, J., Wang, X.: The greatest Ricci lower bound, conical Einstein metrics and the Chern number inequality. arXiv:1207.4839

  29. Székelyhidi, G.: Greatest lower bounds on the Ricci curvature of Fano manifolds. Compos. Math. 147(1), 319–331 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tian, G., Zhu, X.: Uniqueness of Kähler-Ricci solitons. Acta Math. 184, 271–305 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tian, G., Zhu, X.: A new holomorphic invariant and uniqueness of Kähler–Ricci solitons. Comment Math. Helv. 77, 297–325 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zhu, X.: Kähler–Ricci solitons on compact complex manifolds with \(C_1(M)>0.\) J. Geom. Anal. 10, 759–774 (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Berndtsson.

Appendix

Appendix

Here we will prove Proposition 10.1. We suppress the dependence of \(\phi \) on \(t\) and \(s\) in the formulas and use subscripts only to denote differentiation with respect to these variables.

$$\begin{aligned} \frac{d}{ds}\int \dot{\phi _t}(i\partial \bar{\partial }\phi )^n e^{a h^{\phi }}&= \int \ddot{\phi }_{t,s} (i\partial \bar{\partial }\phi )^n e^{a h^{\phi }} \\&\quad +\,n\int \dot{\phi _t}(i\partial \bar{\partial }\dot{\phi }_s)\wedge (i\partial \bar{\partial }\phi )^{n-1} e^{a h^{\phi }}\\&\quad +\,a\int \dot{\phi _t}V(\dot{\phi }_s)\wedge (i\partial \bar{\partial }\phi )^{n} e^{a h^{\phi }}=:I+II+III. \end{aligned}$$

Integrating by parts we get

$$\begin{aligned} II&= - n\int i\partial \dot{\phi _t}\wedge \bar{\partial }\dot{\phi _s}\wedge (i\partial \bar{\partial }\phi )^{n-1} e^{ah^\phi }\\&-\,an\int i\dot{\phi _t}\partial h^{\phi }\wedge \bar{\partial }\dot{\phi _s}\wedge (i\partial \bar{\partial }\phi )^{n-1} e^{ah^\phi }. \end{aligned}$$

Recall that \(i\bar{\partial }h^\phi =V\rfloor i\partial \bar{\partial }\phi \) so that we have \(-i\partial h^\phi =\bar{V}\rfloor i\partial \bar{\partial }\phi .\) Since contraction with a vector field is an antiderivation we get

$$\begin{aligned} 0=\bar{V}\rfloor (\bar{\partial }\dot{\phi _s}\wedge (i\partial \bar{\partial }\phi )^n)=\overline{V(\dot{\phi _s})} (i\partial \bar{\partial }\phi )^n+n\bar{\partial }\dot{\phi _s}\wedge i\partial h^\phi \wedge (i\partial \bar{\partial }\phi )^{n-1}. \end{aligned}$$

Inserting this above we see that

$$\begin{aligned} II=- n\int i\partial \dot{\phi _t}\wedge \bar{\partial }\dot{\phi _s}\wedge (i\partial \bar{\partial }\phi )^{n-1} e^{ah^\phi }-a\int \dot{\phi _t}\overline{V(\dot{\phi _s})}(i\partial \bar{\partial }\phi )^ne^{ah^\phi }. \end{aligned}$$

Hence

$$\begin{aligned} \frac{d}{ds}\int \dot{\phi _t}(i\partial \bar{\partial }\phi )^n e^{a h^{\phi }}&= \int \ddot{\phi }_{t,s} (i\partial \bar{\partial }\phi )^n e^{a h^{\phi }}\\&\quad -\, n\int i\partial \dot{\phi _t}\wedge \bar{\partial }\dot{\phi _s}\wedge (i\partial \bar{\partial }\phi )^{n-1} e^{ah^\phi }\\&\quad +\, 2ia\int \dot{\phi _t}\mathrm{Im\, }V(\dot{\phi }_s)\wedge (i\partial \bar{\partial }\phi )^{n} e^{a h^{\phi }}. \end{aligned}$$

But the left hand side of this equality is real so the last term must be zero (which is also clear since \(\phi \) is invariant under the flow of \(\mathrm{Im\, }V\)). We are then left with the formula in Proposition 10.1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berndtsson, B. A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry. Invent. math. 200, 149–200 (2015). https://doi.org/10.1007/s00222-014-0532-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-014-0532-1

Navigation