Skip to main content
Log in

Homoclinic groups, IE groups, and expansive algebraic actions

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We give algebraic characterizations for expansiveness of algebraic actions of countable groups. The notion of \(p\)-expansiveness is introduced for algebraic actions, and we show that for countable amenable groups, a finitely presented algebraic action is \(1\)-expansive exactly when it has finite entropy. We also study the local entropy theory for actions of countable amenable groups on compact groups by automorphisms, and show that the IE group determines the Pinsker factor for such actions. For an expansive algebraic action of a polycyclic-by-finite group on \(X\), it is shown that the entropy of the action is equal to the entropy of the induced action on the Pontryagin dual of the homoclinic group, the homoclinic group is a dense subgroup of the IE group, the homoclinic group is nontrivial exactly when the action has positive entropy, and the homoclinic group is dense in \(X\) exactly when the action has completely positive entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, F.W., Fuller, K.R.: Rings and categories of modules. Graduate Texts in Mathematics, 2nd edn. Springer, New York (1992)

    Book  MATH  Google Scholar 

  2. Arveson, W.: An invitation to \(C^*\)-algebras. Graduate Texts in Mathematics. Springer, New York (1976)

    Book  MATH  Google Scholar 

  3. Berg, K.R.: Convolution of invariant measures, maximal entropy. Math. Syst. Theory 3, 146–150 (1969)

    Article  MATH  Google Scholar 

  4. Bergelson, V., Gorodnik, A.: Ergodicity and mixing of non-commuting epimorphisms. Proc. Lond. Math. Soc. (3) 95(2), 329–359 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bhattacharya, S.: Expansiveness of algebraic actions on connected groups. Trans. Am. Math. Soc. 356(12), 4687–4700 (2004)

    Article  MATH  Google Scholar 

  6. Blanchard, F.: A disjointness theorem involving topological entropy. Bull. Soc. Math. Fr. 121(4), 465–478 (1993)

    MATH  MathSciNet  Google Scholar 

  7. Blanchard, F., Glasner, E., Host, B.: A variation on the variational principle and applications to entropy pairs. Ergod. Theory Dyn. Syst. 17(1), 29–43 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Blanchard, F., Glasner, E., Kolyada, S., Maass, A.: On Li–Yorke pairs. J. Reine Angew. Math. 547, 51–68 (2002)

    MATH  MathSciNet  Google Scholar 

  9. Blanchard, F., Host, B., Maass, A., Martinez, S., Rudolph, D.J.: Entropy pairs for a measure. Ergod. Theory Dyn. Syst. 15(4), 621–632 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Blanchard, F., Host, B., Ruette, S.: Asymptotic pairs in positive-entropy systems. Ergod. Theory Dyn. Syst. 22(3), 671–686 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bowen, L.: Entropy for expansive algebraic actions of residually finite groups. Ergod. Theory Dyn. Syst. 31(3), 703–718 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bryant, B.F.: On expansive homeomorphisms. Pac. J. Math. 10, 1163–1167 (1960)

    Article  MATH  Google Scholar 

  13. Chou, C.: Elementary amenable groups. Ill. J. Math. 24(3), 396–407 (1980)

    MATH  Google Scholar 

  14. Danilenko, A.I.: Entropy theory from the orbital point of view. Mon. Math. 134(2), 121–141 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Deninger, C.: Fuglede–Kadison determinants and entropy for actions of discrete amenable groups. J. Am. Math. Soc. 19, 737–758 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Deninger, C.: Mahler measures and Fuglede–Kadison determinants. Münster J. Math. 2, 45–63 (2009)

    MATH  MathSciNet  Google Scholar 

  17. Deninger, C., Schmidt, K.: Expansive algebraic actions of discrete residually finite amenable groups and their entropy. Ergod. Theory Dyn. Syst. 27, 769–786 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Einsiedler, M., Rindler, H.: Algebraic actions of the discrete Heisenberg group and other non-abelian groups. Aequ. Math. 62(1–2), 117–135 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Einsiedler, M., Schmidt, K.: The adjoint action of an expansive algebraic \({\mathbb{Z}}^d\)-action. Mon. Math. 135(3), 203–220 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Einsiedler, M., Schmidt, K.: Irreducibility, homoclinic points and adjoint actions of algebraic Z\(^{d}\)-actions of rank one. In: Dynamics and Randomness (Santiago, 2000), pp. 95–124. Kluwer Academic Publications, Dordrecht (2002)

  21. Einsiedler, M., Ward, T.: Entropy geometry and disjointness for zero-dimensional algebraic actions. J. Reine Angew. Math. 584, 195–214 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Elek, G.: On the analytic zero divisor conjecture of Linnell. Bull. Lond. Math. Soc. 35(2), 236–238 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Fuglede, B., Kadison, R.V.: Determinant theory in finite factors. Ann. Math. (2) 55, 520–530 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  24. Glasner, E.: Ergodic theory via joinings. American Mathematical Society, Providence (2003)

    Book  MATH  Google Scholar 

  25. Glasner, E., Thouvenot, J.-P., Weiss, B.: Entropy theory without a past. Ergod. Theory Dyn. Syst. 20(5), 1355–1370 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Glasner, E., Ye, X.: Local entropy theory. Ergod. Theory Dyn. Syst. 29(2), 321–356 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gottschalk, W.H., Hedlund, G.A.: Topological dynamics. American Mathematical Society Colloquium Publications, American Mathematical Society, Providence (1955)

    MATH  Google Scholar 

  28. Hall, P.: Finiteness conditions for soluble groups. Proc. Lond. Math. Soc. (3) 4, 419–436 (1954)

    MATH  Google Scholar 

  29. Herz, C.: The theory of \(p\)-spaces with an application to convolution operators. Trans. Am. Math. Soc. 154, 69–82 (1971)

    MATH  MathSciNet  Google Scholar 

  30. Herz, C.: Harmonic synthesis for subgroups. Ann. Inst. Fourier (Grenoble) 23(3), 91–123 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  31. Huang, W., Li, S.M., Shao, S., Ye, X.: Null systems and sequence entropy pairs. Ergod. Theory Dyn. Syst. 23(5), 1505–1523 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Huang, W., Maass, A., Romagnoli, P.P., Ye, X.: Entropy pairs and a local Abramov formula for a measure theoretical entropy of open covers. Ergod. Theory Dyn. Syst. 24(4), 1127–1153 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Huang, W., Ye, X.: A local variational relation and applications. Isr. J. Math. 151, 237–279 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Huang, W., Ye, X.: Combinatorial lemmas and applications to dynamics. Adv. Math. 220(6), 1689–1716 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Huang, W., Ye, X., Zhang, G.: Local entropy theory for a countable discrete amenable group action. J. Funct. Anal. 261(4), 1028–1082 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Katok, A., Katok, S., Schmidt, K.: Rigidity of measurable structure for \({\mathbb{Z}}^d\)-actions by automorphisms of a torus. Comment. Math. Helv. 77(4), 718–745 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Katok, A., Spatzier, R.J.: Invariant measures for higher-rank hyperbolic abelian actions. Ergod. Theory Dyn. Syst. 16(4), 751–778 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  38. Kechris, A.S.: Classical descriptive set theory. Graduate Texts in Mathematics. Springer, New York (1995)

    Book  MATH  Google Scholar 

  39. Kerr, D., Li, H.: Independence in topological and \(C^*\)-dynamics. Math. Ann. 338(4), 869–926 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  40. Kerr, D., Li, H.: Combinatorial independence in measurable dynamics. J. Funct. Anal. 256(5), 1341–1386 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  41. Kerr, D., Li, H.: Entropy and the variational principle for actions of sofic groups. Invent. Math. 186(3), 501–558 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  42. Kitchens, B., Schmidt, K.: Isomorphism rigidity of irreducible algebraic \({\mathbb{Z}}^d\)-actions. Invent. Math. 142(3), 559–577 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  43. Lam, T.Y.: Lectures on modules and rings. Graduate Texts in Mathematics. Springer, New York (1999)

    Book  MATH  Google Scholar 

  44. Lang, S.: Complex analysis. Graduate Texts in Mathematics, 4th edn. Springer, New York (1999)

    Book  MATH  Google Scholar 

  45. Lang, S.: Algebra. Revised third edition. Graduate Texts in Mathematics. Springer, New York (2002)

    Google Scholar 

  46. Ledrappier, F.: Un champ markovien peut être d’entropie nulle et mélangeant. C. R. Acad. Sci. Paris Sér. A B 287(7), A561–A563 (1978)

    MathSciNet  Google Scholar 

  47. Li, H.: Compact group automorphisms, addition formulas and Fuglede–Kadison determinants. Ann. Math. (2) 176(1), 303–347 (2012)

    Article  MATH  Google Scholar 

  48. Lind, D.: The structure of skew products with ergodic group automorphisms. Isr. J. Math. 28(3), 205–248 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  49. Lind, D., Schmidt, K.: Homoclinic points of algebraic \({\mathbb{Z}}^d\)-actions. J. Am. Math. Soc. 12(4), 953–980 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  50. Lind, D., Schmidt, K.: Symbolic and algebraic dynamical systems. In: Handbook of dynamical systems, vol. 1A, pp. 765–812. North-Holland, Amsterdam (2002)

  51. Lind, D., Schmidt, K., Verbitskiy, E.: Entropy and growth rate of periodic points of algebraic \({\mathbb{Z}}^d\)-actions. In: Dynamical numbers: interplay between dynamical systems and number theory, pp. 195–211, Contemporary Mathematics, vol. 532. American Mathematical Society, Providence, RI (2010)

  52. Lind, D., Schmidt, K., Ward, T.: Mahler measure and entropy for commuting automorphisms of compact groups. Invent. Math. 101, 593–629 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  53. Lindenstrauss, E., Weiss, B.: Mean topological dimension. Isr. J. Math. 115, 1–24 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  54. Linnell, P.A.: Zero divisors and group von Neumann algebras. Pac. J. Math. 149(2), 349–363 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  55. Linnell, P.A.: Zero divisors and \(L^2(G)\). C. R. Acad. Sci. Paris Sér. I Math. 315(1), 49–53 (1992)

    MATH  MathSciNet  Google Scholar 

  56. Linnell, P.A.: Division rings and group von Neumann algebras. Forum Math. 5(6), 561–576 (1993)

    MATH  MathSciNet  Google Scholar 

  57. Linnell, P.A.: Analytic versions of the zero divisor conjecture. In: Geometry and cohomology in group theory (Durham, 1994), Lecture Notes Series, vol. 252, pp. 209–248. London Mathematical Society, Cambridge University Press, Cambridge (1998)

  58. Linnell, P.A., Puls, M.J.: Zero divisors and \(L^p(G)\), II. N. Y. J. Math. 7, 49–58 (2001). (electronic)

    MATH  MathSciNet  Google Scholar 

  59. Lück, W.: \(L^2\)-Invariants: theory and applications to geometry and \(K\)-theory. Springer, Berlin (2002)

    Google Scholar 

  60. Miles, G., Thomas, R.K.: Generalized torus automorphisms are Bernoullian. In: Studies in probability and ergodic theory, Advances in Math. Suppl. Stud., vol. 2, pp. 231–249 Academic Press, New York (1978)

  61. Miles, R.: Expansive algebraic actions of countable abelian groups. Mon. Math. 147(2), 155–164 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  62. Miles, R., Ward, T.: Orbit-counting for nilpotent group shifts. Proc. Am. Math. Soc. 137(4), 1499–1507 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  63. Moulin Ollagnier, J.: Ergodic theory and statistical mechanics. Lecture Notes in Mathematics. Springer, Berlin (1985)

    MATH  Google Scholar 

  64. Ornstein, D.S., Weiss, B.: Entropy and isomorphism theorems for actions of amenable groups. J. Anal. Math. 48, 1–141 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  65. Passman, D.S.: The algebraic structure of group rings. Pure and Applied Mathematics. Wiley, New York (1977)

    MATH  Google Scholar 

  66. Peters, J.: Entropy on discrete abelian groups. Adv. Math. 33(1), 1–13 (1979)

    Article  MATH  Google Scholar 

  67. Pisier, G.: The volume of convex bodies and Banach space geometry. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  68. Puls, M.J.: Zero divisors and \(L^p(G)\). Proc. Am. Math. Soc. 126(3), 721–728 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  69. Rosenthal, H.P.: A characterization of Banach spaces containing \(l_1\). Proc. Natl. Acad. Sci. USA 71, 2411–2413 (1974)

    Article  MATH  Google Scholar 

  70. Rudin, W.: Real and complex analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  71. Rudolph, D.J., Schmidt, K.: Almost block independence and Bernoullicity of \(Z^d\)-actions by automorphisms of compact abelian groups. Invent. Math. 120(3), 455–488 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  72. Ruelle, D.: Statistical mechanics on a compact set with \(Z^{v}\) action satisfying expansiveness and specification. Trans. Am. Math. Soc. 187, 237–251 (1973)

    Article  MathSciNet  Google Scholar 

  73. Schmidt, K.: Automorphisms of compact abelian groups and affine varieties. Proc. Lond. Math. Soc. (3) 61(3), 480–496 (1990)

    Article  MATH  Google Scholar 

  74. Schmidt, K.: Dynamical systems of algebraic origin. Progress in Mathematics. Birkhäuser, Basel (1995)

    Book  MATH  Google Scholar 

  75. Schmidt, K.: The cohomology of higher-dimensional shifts of finite type. Pac. J. Math. 170(1), 237–269 (1995)

    MATH  Google Scholar 

  76. Schmidt, K.: The dynamics of algebraic \({\mathbb{Z}}^d\)-actions. In: European Congress of Mathematics, vol. I (Barcelona, 2000), pp. 543–553, Progr. Math., 201, Birkhäuser, Basel (2001)

  77. Schmidt, K., Verbitskiy, E.: Abelian sandpiles and the harmonic model. Commun. Math. Phys. 292(3), 721–759 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  78. Schmidt, K., Ward, T.: Mixing automorphisms of compact groups and a theorem of Schlickewei. Invent. Math. 111(1), 69–76 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  79. Segal, D.: Polycyclic groups. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1983)

    Book  MATH  Google Scholar 

  80. Walters, A.: An introduction to ergodic theory. Graduate Texts in Mathematics. Springer, New York (1982)

    Book  MATH  Google Scholar 

  81. Wang, X.: Volumes of generalized unit balls. Math. Mag. 78(5), 390–395 (2005)

    Article  MATH  Google Scholar 

  82. Yuzvinskiĭ, S.A.: Metric properties of the endomorphisms of compact groups. (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 29, 1295–1328 (1965) [Translated in Amer. Math. Soc. Transl. (2) 66, 63–98 (1968)]

  83. Yuzvinskiĭ, S.A.: Computing the entropy of a group of endomorphisms. (Russian) Sibirsk. Mat. Ẑ. 8, 230–239 (1967) [Translated in Siberian Math. J. 8, 172–178 (1967)]

Download references

Acknowledgments

The second named author was partially supported by NSF grants DMS-0701414 and DMS-1001625. He is grateful to Doug Lind and Klaus Schmidt for very interesting discussions. We thank David Kerr for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanfeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, NP., Li, H. Homoclinic groups, IE groups, and expansive algebraic actions. Invent. math. 199, 805–858 (2015). https://doi.org/10.1007/s00222-014-0524-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-014-0524-1

Mathematics Subject Classification (2010)

Navigation