Skip to main content

On the local-global conjecture for integral Apollonian gaskets

With an appendix by Péter P. Varjú

Abstract

We prove that a set of density one satisfies the local-global conjecture for integral Apollonian gaskets. That is, for a fixed integral, primitive Apollonian gasket, almost every (in the sense of density) admissible (passing local obstructions) integer is the curvature of some circle in the gasket.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Berenstein, C.A., Yger, A.: Effective Bezout identities in Q[z 1,…,z n ]. Acta Math. 166(1–2), 69–120 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bernays, P.: Über die Darstellung von positiven, ganzen Zahlen durch die primitiven, binären quadratischen Formen einer nicht quadratischen Diskriminante. PhD thesis, Georg-August-Universität, Göttingen, Germany (1912)

  3. Bourgain, J.: Integral Apollonian circle packings and prime curvatures. J. Anal. Math. 118(1), 221–249 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bourgain, J., Fuchs, E.: A proof of the positive density conjecture for integer Apollonian circle packings. J. Am. Math. Soc. 24(4), 945–967 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bourgain, J., Gamburd, A.: Expansion and random walks in \(\mathrm{SL}_{d}(\mathbb{Z}/p^{n} \mathbb{Z})\). I. J. Eur. Math. Soc. 10(4), 987–1011 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bourgain, J., Gamburd, A.: Uniform expansion bounds for Cayley graphs of \(\mathrm{SL}_{2}(\mathbb{F}_{p})\). Ann. Math. (2) 167(2), 625–642 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bourgain, J., Gamburd, A.: Expansion and random walks in \(\mathrm{SL}_{d}(\mathbb {Z}/p^{n}\mathbb{Z})\). II. J. Eur. Math. Soc. 11(5), 1057–1103 (2009). With an appendix by Bourgain

    Article  MATH  MathSciNet  Google Scholar 

  8. Bourgain, J., Kontorovich, A.: On representations of integers in thin subgroups of SL\((2,{{\bf{Z}}})\). Geom. Funct. Anal. 20(5), 1144–1174 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bourgain, J., Kontorovich, A.: On Zaremba’s conjecture (2011). Preprint arXiv:1107.3776

  10. Bourgain, J., Varjú, P.P.: Expansion in SL n (Z/q Z), q arbitrary. Invent. Math. 188(1), 151–173 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bourgain, J., Gamburd, A., Sarnak, P.: Affine linear sieve, expanders, and sum-product. Invent. Math. 179(3), 559–644 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bourgain, J., Kontorovich, A., Sarnak, P.: Sector estimates for hyperbolic isometries. Geom. Funct. Anal. 20(5), 1175–1200 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bourgain, J., Gamburd, A., Sarnak, P.: Generalization of Selberg’s 3/16 theorem and affine sieve. Acta Math. 207, 255–290 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Breuillard, E., Green, B., Tao, T.: Approximate subgroups of linear groups. Geom. Funct. Anal. 21(4), 774–819 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Brooks, R.: The spectral geometry of a tower of coverings. J. Differ. Geom. 23(1), 97–107 (1986)

    MATH  MathSciNet  Google Scholar 

  16. Brooks, R.: The spectral geometry of Riemannian surfaces. In: Monastyrsky, M.I. (ed.) Topology in Molecular Biology. Springer, Berlin (2007)

    Google Scholar 

  17. Burger, M.: Grandes valeurs propres du Laplacien et graphes. In: Séminaire de Théorie Spectrale et Géométrie, No. 4, Année 1985–1986, pp. 95–100. Univ. Grenoble I (1986)

  18. Burger, M.: Petites valeurs propres du Laplacien et topologie de Fell. PhD thesis, EPFL (1986)

  19. Burger, M.: Spectre du Laplacien, graphes et topologie de Fell. Comment. Math. Helv. 63(2), 226–252 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Cowling, M., Haagerup, U., Howe, R.: Almost L 2 matrix coefficients. J. Reine Angew. Math. 387, 97–110 (1988)

    MATH  MathSciNet  Google Scholar 

  21. Diaconis, P., Saloff-Coste, L.: Comparison techniques for random walk on finite groups. Ann. Probab. 21(4), 2131–2156 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fuchs, E.: Arithmetic properties of Apollonian circle packings. Princeton University Thesis (2010)

  23. Fuchs, E., Sanden, K.: Some experiments with integral Apollonian circle packings. Exp. Math. 20(4), 380–399 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gelfand, I.M., Graev, M.I., Pjateckii-Shapiro, I.I.: Teoriya Predstavlenii i Avtomorfnye Funktsii. Generalized Functions, vol. 6. Nauka, Moscow (1966)

    Google Scholar 

  25. Good, A.: Local Analysis of Selberg’s Trace Formula. Lecture Notes in Mathematics, vol. 1040. Springer, Berlin (1983)

    MATH  Google Scholar 

  26. Graham, R.L., Lagarias, J.C., Mallows, C.L., Wilks, A.R., Yan, C.H.: Apollonian circle packings: number theory. J. Number Theory 100(1), 1–45 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Graham, R.L., Lagarias, J.C., Mallows, C.L., Wilks, A.R., Yan, C.H.: Apollonian circle packings: geometry and group theory. I. The Apollonian group. Discrete Comput. Geom. 34(4), 547–585 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Helfgott, H.A.: Growth and generation in \(\mathrm{SL}_{2}(\mathbb{Z}/p\mathbb{Z})\). Ann. Math. (2) 167(2), 601–623 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hermann, G.: Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Math. Ann. 95(1), 736–788 (1926)

    Article  MATH  MathSciNet  Google Scholar 

  30. Iwaniec, H., Kowalski, E.: Analytic Number Theory. American Mathematical Society Colloquium Publications, vol. 53. American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  31. Kassabov, M., Lubotzky, A., Nikolov, N.: Finite simple groups as expanders. Proc. Natl. Acad. Sci. USA 103(16), 6116–6119 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kloosterman, H.D.: On the representation of numbers in the form ax 2+by 2+cz 2+dt 2. Acta Math. 49(3–4), 407–464 (1927)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kontorovich, A., Oh, H.: Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds. J. Am. Math. Soc. 24(3), 603–648 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lagarias, J.C., Mallows, C.L., Wilks, A.R.: Beyond the Descartes circle theorem. Am. Math. Mon. 109(4), 338–361 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Lax, P.D., Phillips, R.S.: The asymptotic distribution of lattice points in Euclidean and non-Euclidean space. J. Funct. Anal. 46, 280–350 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  36. Masser, D.W., Wüstholz, G.: Fields of large transcendence degree generated by values of elliptic functions. Invent. Math. 72(3), 407–464 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  37. Matthews, C., Vaserstein, L., Weisfeiler, B.: Congruence properties of Zariski-dense subgroups. Proc. Lond. Math. Soc. 48, 514–532 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  38. Patterson, S.J.: The limit set of a Fuchsian group. Acta Math. 136, 241–273 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  39. Pyber, L., Szabó, E.: Growth in finite simple groups of lie type of bounded rank (2010). Preprint arXiv:1005.1858

  40. Salehi Golsefidy, A., Varjú, P.: Expansion in perfect groups. Geom. Funct. Anal. 22(6), 1832–1891 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  41. Sarnak, P.: Some Applications of Modular Forms. Cambridge Tracts in Mathematics, vol. 99. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  42. Sarnak, P.: Letter to J. Lagarias. web.math.princeton.edu/sarnak/AppolonianPackings.pdf (2007)

  43. Sarnak, P.: Integral Apollonian packings. Am. Math. Mon. 118(4), 291–306 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. Selberg, A.: On the estimation of Fourier coefficients of modular forms. Proc. Symp. Pure Math. VII, 1–15 (1965)

    Article  MathSciNet  Google Scholar 

  45. Shalom, Y.: Bounded generation and Kazhdan’s property (T). Publ. Math. Inst. Hautes Études Sci. 90, 145–168 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  46. Soddy, F.: The bowl of integers and the hexlet. Nature 139, 77–79 (1937)

    Article  MATH  Google Scholar 

  47. Sullivan, D.: Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Math. 153(3–4), 259–277 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  48. Varjú, P.P.: Expansion in SL d (O K /I), I square-free. J. Eur. Math. Soc. 14(1), 273–305 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  49. Vinogradov, I.: Effective bisector estimate with application to Apollonian circle packings. IMRN (2013). Princeton University Thesis (2012). arXiv:1204.5498v1

Download references

Acknowledgements

The authors are grateful to Peter Sarnak for illuminating discussions, and many detailed comments improving the exposition of an earlier version of this paper. We thank Tim Browning, Sam Chow, Hee Oh, Xin Zhang, and the referee for numerous corrections and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Kontorovich.

Additional information

Bourgain is partially supported by NSF grant DMS-0808042.

Kontorovich is partially supported by NSF grants DMS-1209373, DMS-1064214 and DMS-1001252.

Varjú is partially supported by the Simons Foundation and the European Research Council (Advanced Research Grant 267259).

Appendix: Spectral gap for the Apollonian group (by Péter P. Varjú)

Appendix: Spectral gap for the Apollonian group (by Péter P. Varjú)

In recent years some spectacular advances were made on estimating spectral gaps (to be defined below) of infinite co-volume subgroups of \(\operatorname {SL}(d,\mathbb {Z})\). Bourgain and Gamburd [6] proved uniform spectral gap estimates for Zariski-dense subgroups of \(\operatorname {SL}(2,\mathbb {Z})\) under the additional assumption that the modulus q is prime. One of the crucial ideas in their paper is the application of Helfgott’s triple-product theorem [28]. The result in [6] was generalized in a series of papers [5, 7, 10, 11, 48] and [40]. Some of these require the generalization of [28] obtained independently by Breuillard, Green and Tao [14] and Pyber and Szabó [39].

In particular, Bourgain and Varjú [10, Theorem 1] proved the spectral gap for Zariski-dense subgroups of \(\operatorname {SL}(d, \mathbb {Z})\) without any restriction for the modulus q. Salehi Golsefidy and Varjú [40, Theorem 1] obtained the result for Zariski-dense subgroups of perfect arithmetic groups, but only for square-free q. Unfortunately, these results do not cover Theorem 4.3; the first one is not applicable to the Apollonian group, the second one is restricted for the moduli.

In this appendix, we present an approach which differs from those discussed above. This is much simpler and probably would give better numerical results, but we do not pursue explicit bounds. However, our method depends on special properties of the Apollonian group and does not apply to general Zariski-dense subgroups.

Recall from Sect. 2 that the preimage of the Apollonian group under the homomorphism

$$\iota: \operatorname {SL}(2,\mathbb {C})\to \operatorname {SO}_F(\mathbb {R}) $$

is generated by the matrices

$$ \pm \left ( \begin{array}{c@{\quad}c}{1}&{4i}\\ {0}&{1} \end{array} \right ),\qquad\pm \left ( \begin{array}{c@{\quad}c} {2}&{-i}\\ {-i}&{0} \end{array} \right ), \qquad\pm \left ( \begin{array}{c@{\quad}c} {2+2i}&{4+3i}\\ {-i}&{-2i} \end{array} \right ). $$
(A.1)

We describe an automorphism of \(\operatorname {SL}(2,\mathbb {Z}[i])\) which transforms the above generators to matrices that will be more convenient to work with. Set . A simple calculation shows that the image of the matrices (A.1) under the map gA −1 gA are

$$\pm \left ( \begin{array}{c@{\quad}c} {1}&{4i}\\ {0}&{1} \end{array} \right ),\qquad\pm \left ( \begin{array}{c@{\quad}c} {1}&{0}\\ {-i}&{1} \end{array} \right ), \qquad\pm \left ( \begin{array}{c@{\quad}c} {1+2i}&{4i}\\ {-i}&{1-2i} \end{array} \right ). $$

We put

$$ \gamma _1=\left ( \begin{array}{c@{\quad}c} {1}&{4}\\ {0}&{1} \end{array} \right ),\qquad \gamma _2=\left ( \begin{array}{c@{\quad}c} {1}&{0}\\ {1}&{1} \end{array} \right ), \qquad \gamma _3=\left ( \begin{array}{c@{\quad}c} {1+2i}&{4}\\ {1}&{1-2i} \end{array} \right ). $$
(A.2)

These are the image of (A.1) under the product of two isomorphism: first conjugation by A and then multiplication of the off-diagonal elements by −i and i. We denote by \(\bar{\varGamma }\) the group generated by \(\bar{S}=\{\pm \gamma _{1}^{\pm1},\pm \gamma _{2}^{\pm1},\pm \gamma _{3}^{\pm1}\}\). This is isomorphic to the group denoted by the same symbol in the paper.

First we recall two different notions of spectral gap. The notion, “geometric” spectral gap, has already been explained in Sect. 4.2. Recall that for an integer q, \(\bar{\varGamma}(q)\) denotes the kernel of the projection map \(\bar{\varGamma}\to \operatorname {SL}(2,\mathbb {Z}[i]/(q))\). We consider the Laplace Beltrami operator Δ on the hyperbolic orbifolds \(\bar{\varGamma}(q)\backslash \mathbb {H}^{3}\). We denote by λ 0(q)≤λ 1(q) the two smallest eigenvalues of Δ on \(\bar{\varGamma}(q)\backslash \mathbb {H}^{3}\). The geometric spectral gap is an inequality of the form λ 1(q)>λ 0(q)+ε for some ε>0 independent of q.

The other notion, “combinatorial” spectral gap is defined as follows. Let G be a finite group, and S a symmetric set of generators. Let T G,S be the Markov operator on the space L 2(G) defined by

$$T_{G,S}f(g)=\frac{1}{|S|}\sum_{\gamma \in S} f(\gamma g) $$

for fL 2(G) and gG. We denote by

$$\lambda _n'(G,S)\le\cdots\le \lambda _1'(G,S) \le \lambda _0'(G,S)=1 $$

the eigenvalues of T G,S in increasing order.

The operator \(Id-T_{\bar{\varGamma}/\bar{\varGamma}(q)}\) is a discrete analogue of the Laplacian Δ on \(\bar{\varGamma}(q)\backslash \mathbb {H}^{3}\). So by combinatorial spectral gap we mean the inequality

$$\lambda _1'\bigl(\bar{\varGamma}/\bar{\varGamma}(q),\bar{S} \bigr)<1-\varepsilon $$

for some ε>0 independent of q. To simplify notation, we will write \(\lambda _{1}'(q)=\lambda _{1}'(\bar{\varGamma}/\bar{\varGamma}(q),\bar{S})\).

The relation between the two notions is not just an analogy. It was shown by Brooks [15, Theorem 1] and Burger [1719] that they are equivalent for the fundamental groups of a family of covers of a compact manifold. The orbifolds \(\bar{\varGamma}(q)\backslash \mathbb {H}^{3}\) are not compact, they even have infinite volume, however the equivalence can be extended to cover our example, see [13, Theorems 1.2 and 2.1].

We show that the congruence subgroups \(\bar{\varGamma}(q)\) of the Apollonian group have combinatorial spectral gap which implies Theorem 4.3 in light of [13, Theorems 1.2 and 2.1].

Theorem A.1

Let \(\bar{\varGamma}\) be the Apollonian group and \(\lambda '_{1}(q)\) be as above. There is an absolute constant c>0 such that \(\lambda _{1}'(q)<1-c\) for all q. I.e. the Apollonian group has combinatorial spectral gap.

Denote by Γ 1 and Γ 2 respectively, the groups generated by {γ 1,γ 2} and {γ 1,γ 3} respectively. Denote by \({\bf G}_{1}\) and \({\bf G}_{2}\) the Zariski-closures of Γ 1 and Γ 2 in \(\operatorname {Res}_{\mathbb {R}|\mathbb {C}} \operatorname {SL}(2,\mathbb {C})\), i.e. in \(\operatorname {SL}(2,\mathbb {C})\) considered an algebraic group over \(\mathbb {R}\).

As we will see later, \({\bf G}_{1}\) and \({\bf G}_{2}\) are isomorphic to \(\operatorname {SL}(2,\mathbb {R})\). Moreover Γ 1 and Γ 2 are lattices inside them. This feature of the Apollonian group was pointed out by Sarnak [42]. We exploit it heavily in our approach.

Due to a result going back to Selberg [44], Γ 1 and Γ 2 have geometric spectral gaps with respect to the congruence subgroups. From here we can deduce the combinatorial spectral gap using Brooks [15, Theorem 1] (see also [16, Theorem 1], where the non-compact case is considered.)

We transfer the combinatorial spectral gap property of Γ 1 and Γ 2 to the Apollonian group \(\bar{\varGamma}\) and conclude Theorem A.1. This is done in following two Lemmata:

Lemma A.2

Let G be a finite group and SG a finite symmetric generating set. Let G 1,G 2,…,G k be subgroups of G such that for every gG there are g 1G 1,…,g k G k such that g=g 1g k . Then

$$1-\lambda _1'(G,S)\ge\min_{1\le i\le k} \biggl \{\frac{|S\cap G_{i}|}{|S|}\cdot \frac{1-\lambda _1'(G_{i},S\cap G_{i})}{2k^2} \biggr\}. $$

The above Lemma and its proof below is closely related to the well-known fact that if G is generated by S in k steps then one has \(\lambda '_{1}(G,S)\le1-1/|S|k^{2}\). This can be found for example in [21, Corollary 1 on page 2138]. After circulating an earlier version of this appendix, it was pointed out to me that an idea similar to Lemma A.2 has been used by Sarnak [41, Sect. 2.4], by Shalom [45], and also by Kassabov, Lubotzky and Nikolov [31].

Lemma A.3

Let q≥2 be an integer. Then for every \(g\in\bar{\varGamma}/\bar{\varGamma}(q)\), there are \(g_{1},\ldots, g_{10^{13}}\in \varGamma _{1}/\varGamma _{1}(q)\) and \(h_{1},\ldots, h_{10^{13}}\in \varGamma _{2}/\varGamma _{2}(q)\) such that \(g=g_{1}h_{1}\cdots g_{10^{13}}h_{10^{13}}\).

Lemma A.3 enables us to apply Lemma A.2 with k=2⋅1013 and G i =Γ 1/Γ 1(q) for odd i and G i =Γ 2/Γ 2(q) for even i. Now [44] and [16, Theorem 1] provides us with lower bounds on

$$\begin{aligned} &1-\lambda _1'\bigl(\varGamma _1/ \varGamma _1(q),\bigl\{\pm \gamma _1^{\pm1},\pm \gamma _2^{\pm1}\bigr\}\bigr) \quad\mbox{and}\\ & 1- \lambda _1'\bigl(\varGamma _2/\varGamma _2(q), \bigl\{\pm \gamma _1^{\pm1},\pm \gamma _3^{\pm1} \bigr\}\bigr). \end{aligned}$$

Therefore Theorem A.1 is proved once the two Lemmata are proved.

Before we proceed with the proofs, we make two remarks. First, we note that instead of [44] we could just as well use [10, Theorem 1]. Second, we suggest that the constant 1013 in Lemma A.3 is not optimal. In particular, the argument we present would give 72 if the statement is checked for q=27⋅3, e.g. by a computer program. Certainly there is further room for improvement but we make no efforts to optimize the constants.

Proof of Lemma A.2

Denote by π the regular representation of G, i.e. we write

$$\pi(g_0)f(g)=f\bigl(g_0^{-1}g\bigr) $$

for fL 2(G) and g,g 0G. Let T G,S be the Markov operator defined above. Let f 0L 2(G) be an eigenfunction with ∥f 02=1 corresponding to \(\lambda _{1}'(G,S)\). It is orthogonal to the constant and

$$\langle T_{G,S}f_0,f_0\rangle= \lambda _1'(G,S). $$

Since f 0 is orthogonal to the constant, we have

$$\sum_{g\in G}\bigl\langle\pi(g)f_0,f_0 \bigr\rangle=\big|\langle f_0,1\rangle\big|^2=0. $$

Thus there is g 0G such that 〈π(g 0)f 0,f 0〉≤0 and hence \(\|\pi(g_{0})f_{0}-f_{0}\|_{2}\ge\sqrt{2}\).

By the hypothesis of the lemma, there are g i G i for 1≤ik such that g 0=g 1g k . By the triangle inequality, there is some 1≤i 0k such that

$$\big\|\pi(g_1\cdots g_{i_0-1})f_0- \pi(g_1\cdots g_{i_0})f_0\big\|_2\ge \sqrt{2}/k. $$

Since π is unitary, we have \(\|f_{0}-\pi(g_{i_{0}})f_{0}\|_{2}\ge\sqrt{2}/k\).

We write f 0=f 1+f 2 such that f 1 is invariant under the elements of \(G_{i_{0}}\) in the regular representation π and f 2 is orthogonal to the space of functions invariant under \(G_{i_{0}}\). Then

$$\sqrt{2}/k\le\big\|f_0-\pi(g_{i_0})f_0 \big\|_2 =\big\|f_2-\pi(g_{i_0})f_2 \big\|_2\le2\|f_2\|_2. $$

Thus \(\|f_{2}\|_{2}\ge1/\sqrt{2}k\).

Now we can write

$$\begin{aligned} \langle T_{G,S\cap G_{i_0}}f_0,f_0\rangle =& \|f_1\|_2^2+\langle T_{G,S\cap G_{i_0}}f_2,f_2 \rangle \\ \le&\|f_1\|_2^2+\lambda _1'(G_{i_0},S \cap G_{i_0})\|f_2\|_2^2 \\ =& 1-\bigl(1-\lambda _1'(G_{i_0},S\cap G_{i_0})\bigr)\|f_2\|_2^2. \end{aligned}$$
(A.3)

Since

$$T_{G,S}=\frac{|S\cap G_{i_0}|}{|S|}T_{G,S\cap G_{i_0}} +\frac{|S\backslash G_{i_0}|}{|S|}T_{G,S\backslash G_{i_0}}, $$

we have

$$ \langle T_{G,S}f_0,f_0 \rangle\le1- \frac{|S\cap G_{i_0}|}{|S|}\bigl(1-\langle T_{G,S\cap G_{i_0}}f_0,f_0 \rangle\bigr). $$
(A.4)

We combine (A.3), (A.4) and the estimate on ∥f 22 and get

$$\langle T_{G,S}f_0,f_0\rangle\le1- \frac{|S\cap G_{i_0}|}{|S|}\cdot \frac{1-\lambda _1'(G_{i_0},S\cap G_{i_0})}{2k^2} $$

which was to be proved. □

Now we turn to the proof of Lemma A.3. It will be convenient to write

$$A_k(q)=\bigl\{g_1h_1\cdots g_kh_k:g_1,\ldots g_k\in \varGamma _1/\varGamma _1(q), h_1,\ldots h_k\in \varGamma _2/\varGamma _2(q)\bigr\}. $$

First we consider the case when q is the power of a prime; the general case will be easy to deduce from this.

Lemma A.4

Let p be a prime and m a positive integer. Then \(A_{10^{13}}(p^{m})=\bar{\varGamma}/\bar{\varGamma}(p^{m})\).

We use different methods when p is 2 or 3 compared to when it is larger. First we consider the latter situation.

Proof of Lemma A.4 for p≥5

It is well-known and easy to check that the group generated by γ 1 and γ 2 is

$$ \varGamma _1=\left \{\left ( \begin{array}{c@{\quad}c} {a}&{b}\\ {c}&{d} \end{array} \right )\in \operatorname {SL}(2,\mathbb {Z}): b\equiv0\quad \operatorname {mod}4 \right \}. $$
(A.5)

Thus \(\varGamma _{1}/\varGamma _{1}(p^{m})= \operatorname {SL}(2,\mathbb {Z}/p^{m}\mathbb {Z})\) for p≠2.

By simple calculation:

$$\left ( \begin{array}{c@{\quad}c} {a^{-1}}&{0}\\ {0}&{a} \end{array} \right ) \left ( \begin{array}{c@{\quad}c} {\frac{1}{2}}&{0}\\ {\frac{-1}{8}}&{2} \end{array} \right ) \gamma _3^2 \left ( \begin{array}{c@{\quad}c} {1}&{0}\\ {\frac{1}{8}}&{1} \end{array} \right ) \gamma _3^{-1} \left ( \begin{array}{c@{\quad}c} {a}&{0}\\ {0}&{a^{-1}} \end{array} \right ) =\left ( \begin{array}{c@{\quad}c} {1}&{0}\\ {\frac{-3ia^2}{2}}&{1} \end{array} \right ). $$

Since p≠2 we can divide by 2 in the ring \(\mathbb {Z}/p^{m}\mathbb {Z}\), hence for (a,p)=1, the matrices in the above calculation are in Γ 1/Γ 1(p m) except for γ 3. Therefore

$$\left ( \begin{array}{c@{\quad}c} {1}&{0}\\ {\frac{-3ia^2}{2}}&{1} \end{array} \right )\in A_3 \bigl(p^m\bigr). $$

Using this, we want to show that

$$ \left ( \begin{array}{c@{\quad}c} {1}&{0}\\ {a i}&{1} \end{array} \right )\in A_{12}\bigl(p^m\bigr) $$
(A.6)

for all \(a\in \mathbb {Z}/p^{m}\mathbb {Z}\). To do this, we need to show that for every element \(x\in \mathbb {Z}/p^{m}\mathbb {Z}\), we can find elements \(a_{1},\ldots, a_{k}\in \mathbb {Z}/p^{m}\mathbb {Z}\) for some 0≤k≤4, such that a 1,…,a k are not divisible by p and \(x=a_{1}^{2}+\cdots+a_{k}^{2}\). If m=1, this simply follows from the fact that any positive integer is a sum of at most 4 squares, and the a i can not be divisible by p since 0<a i xp and at least one of the inequalities are strict.

Suppose that m>1, \(x\in \mathbb {Z}/p^{m}\mathbb {Z}\) and \(a_{1}^{2}+\cdots+a_{k}^{2}\equiv x\operatorname {mod}p\) with none of a 1a k divisible by p. Then by Hensel’s lemma (recall that p≠2), there is an \(a_{1}'\in \mathbb {Z}/p^{m}\mathbb {Z}\) such that

$$\bigl(a_1'\bigr)^2=a_1^2+ \bigl(x-a_1^2-\cdots-a_k^2 \bigr). $$

This proves the claim for arbitrary m≥1.

Multiplying (A.6) by a suitable unipotent element of Γ 1/Γ 1(p m), we can get

$$\left ( \begin{array}{c@{\quad}c} {1}&{0}\\ {a}&{1} \end{array} \right )\in A_{12} \bigl(p^m\bigr) $$

for \(a\in \mathbb {Z}[i]/(p^{m})\). We can prove the same for the upper triangular unipotents by a very similar argument.

Again, by simple calculation:

$$\left ( \begin{array}{c@{\quad}c} {1}&{a}\\ {0}&{1} \end{array} \right ) \left ( \begin{array}{c@{\quad}c} {1}&{0}\\ {b}&{1} \end{array} \right ) \left ( \begin{array}{c@{\quad}c} {1}&{c}\\ {0}&{1} \end{array} \right ) =\left ( \begin{array}{c@{\quad}c} {1+ab}&{a+c+abc}\\ {b}&{1+bc} \end{array} \right ). $$

This shows that

$$\left ( \begin{array}{c@{\quad}c} {a'}&{b'}\\ {c'}&{d'} \end{array} \right )\in A_{36} \bigl(p^m\bigr) $$

for all \(a',b',c',d'\in \mathbb {Z}[i]/(p^{m})\), ad′−bc′=1, provided c′ is not divisible by a prime above p.

Thus, A 36(p m) contains more than half of the group \(\bar{\varGamma}/\bar{\varGamma}(p^{m})\), hence

$$A_{72}\bigl(p^m\bigr)=\bar{\varGamma}/\bar{\varGamma} \bigl(p^m\bigr). $$

 □

Proof of Lemma A.4 for p=2 and 3

We give the proof for p=2 and then explain the differences for p=3.

We prove by induction the following statement. For every m≥7 and \(g\in\bar{\varGamma}(2^{7})/\bar{\varGamma}(2^{m})\), there are g 1,g 2,g 3Γ 1(22)/Γ 1(2m) such that

$$g=g_1\gamma _3g_2\gamma _3^{-1} \gamma _3^2 g_3\gamma _3^{-2}. $$

For m=7 this is clear since we can take g 1=g 2=g 3=1. Now assume that m>7 and the statement holds for m−1. In this proof, we denote by 1 the multiplicative unit (identity matrix) and by 0 the matrix with all entries 0. Let \(g\in\bar{\varGamma}(2^{7})/\bar{\varGamma}(2^{m})\) be arbitrary. By the induction hypothesis, there is h 1,h 2,h 3Γ 1(22)/Γ 1(2m) such that

$$g-h_1\gamma _3h_2\gamma _3^{-1} \gamma _3^2 h_3\gamma _3^{-2}=2^{m-1}x, $$

where x can be considered as an element of \(\operatorname {Mat}(2,\mathbb {Z}[i]/(2))\), i.e. a 2×2 matrix with elements in \(\mathbb {Z}[i]/(2)\). Since g,h 1,h 2,h 3 has determinant 1 and congruent to the unit element mod 2, x has trace 0.

Now we look for suitable \(x_{1},x_{2},x_{3}\in \operatorname {Mat}(2,\mathbb {Z})\) such that

$$x_1+\gamma _3x_2\gamma _3^{-1}+ \gamma _3^2 x_3\gamma _3^{-2} \equiv2^{m-1}x\quad \operatorname {mod}2^m. $$

Moreover, we ensure that \(x_{i}\equiv0\quad \operatorname {mod}2^{m-4}\) and that \(\operatorname {Tr}(x_{i})\equiv0\quad \operatorname {mod}2^{m}\) for all i=1,2,3. Since m≥8, this implies that \(h_{i}+x_{i}\equiv1\quad \operatorname {mod}4\) and \(\det(h_{i}+x_{i})\equiv1 \quad \operatorname {mod}2^{m}\), hence h i +x i Γ 1(22)/Γ 1(2m). Recall (A.5) from the previous proof. If the matrices x i satisfy the claimed properties then

$$\begin{aligned} &(h_1+x_1)\gamma _3(h_2+x_2) \gamma _3^{-1}\gamma _3^2 (h_3+x_3) \gamma _3^{-2} \\ &\quad\equiv h_1\gamma _3h_2 \gamma _3^{-1}\gamma _3^2 h_3 \gamma _3^{-2}+ x_1+\gamma _3x_2 \gamma _3^{-1}+\gamma _3^2 x_3 \gamma _3^{-2}\equiv g\quad \operatorname {mod}2^m. \end{aligned}$$

The matrices x 1,x 2,x 3 can be chosen to be a suitable linear combination of the matrices in the following calculations, and this finishes the induction:

$$2^{m-1}\left ( \begin{array}{c@{\quad}c} {0}&{1}\\ {0}&{0} \end{array} \right )+ \gamma _3 0\gamma _3^{-1}+\gamma _3^2 0 \gamma _3^{-2} \equiv2^{m-1}\left ( \begin{array}{c@{\quad}c} {0}&{1}\\ {0}&{0} \end{array} \right )\quad \operatorname {mod}2^m, $$
$$2^{m-1}\left ( \begin{array}{c@{\quad}c} {0}&{0}\\ {1}&{0} \end{array} \right )+ \gamma _3 0\gamma _3^{-1}+\gamma _3^2 0 \gamma _3^{-2} 2^{m-1}\equiv \left ( \begin{array}{c@{\quad}c} {0}&{0}\\ {1}&{0} \end{array} \right )\quad \operatorname {mod}2^m, $$
$$2^{m-1}\left ( \begin{array}{c@{\quad}c} {1}&{0}\\ {0}&{-1} \end{array} \right )+ \gamma _3 0\gamma _3^{-1}+\gamma _3^2 0 \gamma _3^{-2} \equiv2^{m-1}\left ( \begin{array}{c@{\quad}c} {1}&{0}\\ {0}&{-1} \end{array} \right )\quad \operatorname {mod}2^m, $$
$$\begin{aligned} &2^{m-2}\left ( \begin{array}{c@{\quad}c} {1}&{3}\\ {1}&{-1} \end{array} \right )+ \gamma _3 2^{m-2}\left ( \begin{array}{c@{\quad}c} {0}&{1}\\ {0}&{0} \end{array} \right )\gamma _3^{-1}+\gamma _3^2 0 \gamma _3^{-2} \\ &\quad\equiv2^{m-1}\left ( \begin{array}{c@{\quad}c} {-i}&{0}\\ {0}&{i} \end{array} \right )\quad \operatorname {mod}2^m, \\ &2^{m-3}\left ( \begin{array}{c@{\quad}c} {-4}&{0}\\ {3}&{4} \end{array} \right )+ \gamma _3 2^{m-3}\left ( \begin{array}{c@{\quad}c} {0}&{0}\\ {1}&{0} \end{array} \right )\gamma _3^{-1}+\gamma _3^2 0 \gamma _3^{-2}\\ &\quad \equiv2^{m-1}\left ( \begin{array}{c@{\quad}c} {0}&{0}\\ {i}&{0} \end{array} \right )\quad \operatorname {mod}2^m, \\ &2^{m-4}\left ( \begin{array}{c@{\quad}c} {2}&{15}\\ {4}&{-2} \end{array} \right )+ \gamma _3 0\gamma _3^{-1}+\gamma _3^2 2^{m-4}\left ( \begin{array}{c@{\quad}c} {0}&{1}\\ {0}&{0} \end{array} \right ) \gamma _3^{-2}\\ &\quad \equiv2^{m-1} \left ( \begin{array}{c@{\quad}c} {-i}&{i}\\ {0}&{i} \end{array} \right )\quad \operatorname {mod}2^m. \end{aligned}$$

Now we showed that

$$A_3\bigl(2^{m}\bigr)\supseteq\bar{\varGamma} \bigl(2^7\bigr)/\bar{\varGamma}\bigl(2^m\bigr). $$

The index of \(\bar{\varGamma}(2^{7})/\bar{\varGamma}(2^{m})\) in \(\bar{\varGamma}/\bar{\varGamma}(2^{m})\) is at most

$$\big| \operatorname {SL}\bigl(2,\mathbb {Z}[i]/\bigl(2^7\bigr)\bigr)\big|=46\cdot64^6. $$

This shows that

$$A_{10^{13}}\bigl(2^{m}\bigr)=\bar{\varGamma}/\bar{\varGamma} \bigl(2^m\bigr). $$

Now we turn to the case p=3. By the same argument, one can show that for every m≥1 and \(g\in\bar{\varGamma}(3)/\bar{\varGamma}(3^{m})\), there are g 1,g 2,g 3Γ 1/Γ 1(3m) such that

$$g=g_1\gamma _3g_2\gamma _3^{-1} \gamma _3^2 g_3\gamma _3^{-2}. $$

The only significant difference is that one needs to use the following identities:

$$\begin{aligned} &3^{m-1}\left ( \begin{array}{c@{\quad}c} {1}&{3}\\ {1}&{-1} \end{array} \right )+ \gamma _33^{m-1}\left ( \begin{array}{c@{\quad}c} {0}&{1}\\ {0}&{0} \end{array} \right )\gamma _3^{-1}+\gamma _3^2 0 \gamma _3^{-2}\\ &\quad \equiv3^{m-1}\left ( \begin{array}{c@{\quad}c} {i}&{i}\\ {0}&{-i} \end{array} \right )\quad \operatorname {mod}3^m, \\ &3^{m-1}\left ( \begin{array}{c@{\quad}c} {-4}&{16}\\ {3}&{4} \end{array} \right )+ \gamma _33^{m-1} \left ( \begin{array}{c@{\quad}c} {0}&{0}\\ {1}&{0} \end{array} \right )\gamma _3^{-1}+\gamma _3^2 0 \gamma _3^{-2}\\ &\quad \equiv3^{m-1}\left ( \begin{array}{c@{\quad}c} {i}&{0}\\ {-i}&{-i} \end{array} \right )\quad \operatorname {mod}3^m, \\ &3^{m-1}\left ( \begin{array}{c@{\quad}c} {2}&{15}\\ {4}&{-2} \end{array} \right )+ \gamma _3 0\gamma _3^{-1}+\gamma _3^23^{m-1} \left ( \begin{array}{c@{\quad}c} {0}&{1}\\ {0}&{0} \end{array} \right )\gamma _3^{-2}\\ &\quad\equiv3^{m-1}\left ( \begin{array}{c@{\quad}c} {i}&{-i}\\ {0}&{-i} \end{array} \right ) \quad \operatorname {mod}3^m. \end{aligned}$$

Using this claim, one can finish the proof as above. □

Proof of Lemma A.3

Let q be an integer and \(q=p_{1}^{m_{1}}\cdots p_{n}^{m_{n}}\) where p i are primes. We prove that

$$A_{10^{13}}(q)=A_{10^{13}}\bigl(p_1^{m_1} \bigr)\times\cdots\times A_{10^{13}}\bigl(p_n^{m_n} \bigr). $$

Let \(x\in A_{10^{13}}(p_{1}^{m_{1}})\times\cdots\times A_{10^{13}}(p_{n}^{m_{n}})\) be arbitrary. By definition, for each k, we can find elements \(g_{1}^{(k)},\ldots, g_{10^{13}}^{(k)}\in \varGamma _{1}/\varGamma _{1}(q)\) and \(h_{1}^{(k)},\ldots, h_{10^{13}}^{(k)}\in \varGamma _{2}/\varGamma _{2}(q)\) such that

$$x\equiv g_1^{(k)}h_1^{(k)}\cdots g_{10^{13}}^{(k)}h_{10^{13}}^{(k)}\quad \operatorname {mod}p_k^{m_k}. $$

Since Γ 1/Γ 1(p m) and Γ 2/Γ 2(p m) are the direct product of local factors, we can find elements \(g_{1},\ldots, g_{10^{13}}\in \varGamma _{1}/\varGamma _{1}(p^{m})\) and \(h_{1},\ldots, h_{10^{13}}\in \varGamma _{2}/\varGamma _{2}(p^{m})\) such that

$$g_i\equiv g_i^{(k)}\quad \operatorname {mod}p_k^{m_k}\quad\mbox{and}\quad h_i\equiv h_i^{(k)}\quad \operatorname {mod}p_k^{m_k} $$

for each i and k. Thus

$$x= g_1h_1\cdots g_{10^{13}}h_{10^{13}} \in A_{10^{13}}(q). $$

Using Lemma A.4 we get

$$\begin{aligned} \bar{\varGamma}/\bar{\varGamma}(q) \supset& A_{10^{13}}(q) \supset A_{10^{13}}\bigl(p_1^{m_1}\bigr)\times\cdots\times A_{10^{13}}\bigl(p_n^{m_n}\bigr) \\ =&\bar{\varGamma}/ \bar{\varGamma}\bigl(p_1^{m_1}\bigr)\times\cdots\times \bar{\varGamma }/\bar{\varGamma}\bigl(p_{n}^{m_n}\bigr). \end{aligned}$$

Obviously

$$\bar{\varGamma}/\bar{\varGamma}(q)\subset\bar{\varGamma}/\bar{\varGamma } \bigl(p_1^{m_1}\bigr)\times\cdots\times \bar{\varGamma}/ \bar{\varGamma}\bigl(p_{n}^{m_n}\bigr) $$

hence all these containments must be equality. □

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bourgain, J., Kontorovich, A. On the local-global conjecture for integral Apollonian gaskets. Invent. math. 196, 589–650 (2014). https://doi.org/10.1007/s00222-013-0475-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-013-0475-y

Keywords

  • Congruence Subgroup
  • Unipotent Element
  • Infinite Volume
  • Binary Quadratic Form
  • Arithmetic Subgroup