Skip to main content
Log in

Uniform existential interpretation of arithmetic in rings of functions of positive characteristic

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We show that first order integer arithmetic is uniformly positive-existentially interpretable in large classes of (subrings of) function fields of positive characteristic over some languages that contain the language of rings. One of the main intermediate results is a positive existential definition (in these classes), uniform among all characteristics p, of the binary relation “\(y=x^{p^{s}}\) or \(x=y^{p^{s}}\) for some integer s≥0”. A natural consequence of our work is that there is no algorithm to decide whether or not a system of polynomial equations over \(\mathbb {Z}[z]\) has solutions in all but finitely many polynomial rings \(\mathbb {F}_{p}[z]\). Analogous consequences are deduced for the rational function fields \(\mathbb {F}_{p}(z)\), over languages with a predicate for the valuation ring at zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We have been informed that they now have obtained (non-uniform) positive existential such definitions over \(\mathcal {L}_{z,{\rm ord}}\).

References

  1. Ax, J.: Solving Diophantine problems modulo every prime. Ann. Math. 85(2), 161–183 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ax, J., Kochen, S.: Diophantine problems over local fields I. Am. J. Math. 87(3), 605–630 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ax, J., Kochen, S.: Diophantine problems over local fields II. Am. J. Math. 87(3), 631–648 (1965)

    Article  MathSciNet  Google Scholar 

  4. Ax, J., Kochen, S.: Diophantine problems over local fields III. Ann. Math. 83(3), 437–456 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chatzidakis, Z., Hrushovski, E.: Asymptotic theories of differential fields. Ill. J. Math. 47(3), 593–618 (2003)

    MATH  MathSciNet  Google Scholar 

  6. Chatzidakis, Z., van den Dries, L., Macintyre, A.: Definable sets over finite fields. J. Reine Angew. Math. 427, 107–135 (1992)

    MATH  MathSciNet  Google Scholar 

  7. Davis, M.: Hilbert’s tenth problem is unsolvable. Am. Math. Mon. 80, 233–269 (1973)

    Article  MATH  Google Scholar 

  8. Davis, M., Matijasevich, Y., Robinson, J.: Hilbert’s tenth problem: Diophantine equations: positive aspects of a negative solution. In: Mathematical Developments Arising from Hilbert Problems, Northern Illinois Univ., De Kalb, Ill., 1974. Proc. Sympos. Pure Math., vol. XXVIII, pp. 323–378. Amer. Math. Soc., Providence (1976) (loose erratum)

    Chapter  Google Scholar 

  9. Demeyer, J.: Recursively enumerable sets of polynomials over a finite field are Diophantine. Invent. Math. 170(3), 655–670 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Denef, J.: The Diophantine problem for polynomial rings and fields of rational functions. Trans. Am. Math. Soc. 242, 391–399 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Denef, J.: The Diophantine problem for polynomial rings of positive characteristic. In: Boffa, M., van Dalen, D., McAloon, K. (eds.) Logic Colloquium, vol. 78, pp. 131–145. North Holland, Amsterdam (1979)

    Google Scholar 

  12. Eisenträger, K.: Hilbert’s tenth problem for algebraic function fields of characteristic 2. Pac. J. Math. 210(2), 261–281 (2003)

    Article  MATH  Google Scholar 

  13. Eisenträger, K., Shlapentokh, A.: Undecidability in function fields of positive characteristic. Int. Math. Res. Not. 2009, 4051–4086 (2009)

    MATH  Google Scholar 

  14. Hodges, W.: Model Theory. Encyclopedia of Mathematics and Its Applications, vol. 42. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  15. Hrushovski, E.: The elementary theory of the Frobenius automorphisms (2006). arXiv:math/0406514v1

  16. Kim, K.H., Roush, F.W.: Diophantine unsolvability for function fields over certain infinite fields of positive characteristic p. J. Algebra 152(1), 230–239 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Macintyre, A.: Nonstandard Frobenius (in preparation)

  18. Matijasevich, Y.: Enumerable sets are Diophantine. Dokl. Akad. Nauk SSSR 191, 279–282 (1970). English translation: Soviet Math. Dokl. 11, 354-358 (1970)

    MathSciNet  Google Scholar 

  19. Moret-Bailly, L.: Sur la définissabilité existentielle de la non-nullité dans les anneaux. Algebra Number Theory 1(3), 331–346 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nathanson, M.B.: Elementary Methods in Number Theory. Graduate Texts in Mathematics, vol. 195. Springer, Berlin (2000)

    MATH  Google Scholar 

  21. Navarro, J.A.: Álgebra conmutativa básica (2010). Downloadable from http://matematicas.unex.es/~navarro/ACB.pdf

  22. Pasten, H., Pheidas, T., Vidaux, X.: A survey on Büchi’s problem: new presentations and open problems. Zap. Nauč. Semin. POMI 377, 111–140 (2010)

    MathSciNet  Google Scholar 

  23. Pheidas, T.: An undecidability result for power series rings of positive characteristic II. Proc. Am. Math. Soc. 100(3), 526–530 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pheidas, T.: Hilbert’s tenth problem for fields of rational functions over finite fields. Invent. Math. 103, 1–8 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pheidas, T., Vidaux, X.: The analogue of Büchi’s problem for rational functions. J. Lond. Math. Soc. 74(3), 545–565 (2006). Corrigendum: The analogue of Büchi’s problem for rational functions, J. Lond. Math. Soc. 82(1), 273–278 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pheidas, T., Zahidi, K.: Undecidable existential theories of polynomial rings and function fields. Commun. Algebra 27(10), 4993–5010 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Pheidas, T., Zahidi, K.: Undecidability of existential theories of rings and fields: a survey. Contemp. Math. 270, 49–106 (1999)

    Article  MathSciNet  Google Scholar 

  28. Poonen, B.: Uniform first-order definitions in finitely generated fields. Duke Math. J. 138(1) (2007)

  29. Poonen, B.: Hilbert’s tenth problem over rings of number-theoretic interest. Downloadable from www-math.mit.edu/~poonen/papers/aws2003.pdf

  30. Rubel, L.: An essay on Diophantine equations for analytic functions. Expo. Math. 13, 81–92 (1995)

    MATH  MathSciNet  Google Scholar 

  31. Rumely, R.: Undecidability and definability for the theory of global fields. Trans. Am. Math. Soc. 262(1), 195–217 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  32. Shlapentokh, A.: Diophantine undecidability over algebraic function fields over finite fields of constants. J. Number Theory 58, 317–342 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  33. Shlapentokh, A.: Hilbert’s tenth problem for algebraic function fields over infinite fields of constants of positive characteristic. Pac. J. Math. 193(2) (2000)

  34. Shlapentokh, A.: Hilbert’s Tenth Problem—Diophantine Classes and Extensions to Global Fields. New Mathematical Monographs, vol. 7. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  35. Shlapentokh, A., Vidaux, X.: The analogue of Büchi’s problem for function fields. J. Algebra 330(1), 482–506 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Videla, C.: Hilbert’s tenth problem for rational function fields in characteristic 2. Proc. Am. Math. Soc. 120(1), 249–253 (1994)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ricardo Baeza, Antonio Laface, Angus Macintyre and Thomas Scanlon for comments on a first version of this paper, and Alexander Molnar for a careful reading of the very final version of it. The authors were also benefited from discussions with Ram Murty, Alexandra Shlapentokh and Carlos Videla.

Finally, the authors would like to heartily thank the anonymous referee. Her or his comments and corrections greatly improved the quality and presentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanases Pheidas.

Additional information

This work was developed as part of the first author’s thesis at Universidad de Concepción, (Chile). It was supported by the third author’s Chilean research project Fondecyt 1090233. During the revision of this work, the first author was partially supported by an Ontario Graduate Scholarship, and the second author was supported by the Conicyt Program ‘Atracción de Capital Humano Avanzado’ 80112001.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasten, H., Pheidas, T. & Vidaux, X. Uniform existential interpretation of arithmetic in rings of functions of positive characteristic. Invent. math. 196, 453–484 (2014). https://doi.org/10.1007/s00222-013-0472-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-013-0472-1

Mathematics Subject Classification

Navigation