Skip to main content
Log in

The main conjecture of Iwasawa theory for totally real fields

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let p be an odd prime. Let \(\mathcal{G}\) be a compact p-adic Lie group with a quotient isomorphic to ℤ p . We give an explicit description of K 1 of the Iwasawa algebra of \(\mathcal{G}\) in terms of Iwasawa algebras of Abelian subquotients of \(\mathcal{G}\). We also prove a result about K 1 of a certain canonical localisation of the Iwasawa algebra of \(\mathcal{G}\), which occurs in the formulation of the main conjectures of noncommutative Iwasawa theory. These results predict new congruences between special values of Artin L-functions, which we then prove using the q-expansion principle of Deligne-Ribet. As a consequence we prove the noncommutative main conjecture for totally real fields, assuming a suitable version of Iwasawa’s conjecture about vanishing of the cyclotomic μ-invariant. In particular, we get an unconditional result for totally real pro-p p-adic Lie extension of Abelian extensions of ℚ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barsky, D.: Fonctions zeta p-adiques d’une classe de rayon des corps de nombres totalement reels. Groupe de travail d’analyse ultraletrique 5(16), 1–23 (1977–1978)

    Google Scholar 

  2. Burns, D.: On main conjectures in non-commutative Iwasawa theory and related conjectures (2010). Preliminary version

  3. Burns, D.: On the main conjectures of geometric Iwasawa theory and related conjectures (2010). Preliminary version

  4. Burns, D., Flach, M.: Tamagawa numbers for motives with (non-commutative) coefficients. Doc. Math. 6, 501–570 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Burns, D., Greither, C.: On the equivariant Tamagawa number conjecture for Tate motives. Invent. Math. 153, 303–359 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cassou-Nogués, P.: Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques. Invent. Math. 51(1), 29–59 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coates, J.: p-adic L-functions and Iwasawa’s theory. In: Frohlich, A. (ed.) Algebraic Number Fields: L-Functions and Galois Properties. Academic Press, London (1977)

    Google Scholar 

  8. Coates, J., Fukaya, T., Kato, K., Sujatha, R., Venjakob, O.: The GL 2 main conjecture for elliptic curves without complex multiplication. Publ. Math. IHES 101, 163–208 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Coates, J., Lichtenbaum, S.: On l-adic zeta functions. Ann. Math. 98, 498–550 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. Crew, R.: L-functions of p-adic characters and geometric iwasawa theory. Invent. Math. 88, 395–403 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deligne, P., Ribet, K.A.: Values of Abelian L-functions at negative integers over totally real fields. Invent. Math. 59, 227–286 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dress, A.: Contributions to the theory of induced representations. In: Algebraic K-Theory. Lecture Notes in Mathematics, vol. 342, pp. 183–240. Springer, Berlin (1973)

    Google Scholar 

  13. Emerton, M., Kisin, M.: Unit L-functions and a conjecture of Katz. Ann. Math. 153, 329–354 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ferrero, B., Washington, L.C.: The Iwasawa invariant μ p vanishes for Abelian number fields. Ann. Math. 109, 377–395 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fontaine, J.-M., Perrin-Riou, B.: Autour des conjectures de Bloch et Kato. III. le case général. C. R. Acad. Sci Paris Sér. I Math. 313(7), 421–428 (1991)

    MathSciNet  MATH  Google Scholar 

  16. Fukaya, T., Kato, K.: A formulation of conjectures on p-adic zeta functions in non-commutative Iwasawa theory. In: Uraltseva, N.N. (ed.) Proceedings of the St. Petersburg Mathematical Society, vol. 12, pp. 1–85 (2006)

    Google Scholar 

  17. Greenberg, R.: On p-adic L-functions and cyclotomic fields—II. Nagoya Math. J. 67, 139–158 (1977)

    MathSciNet  MATH  Google Scholar 

  18. Greenberg, R.: On p-adic Artin L-functions. Nagoya Math. J. 89, 77–87 (1983)

    MathSciNet  MATH  Google Scholar 

  19. Hara, T.: Inductive construction of the p-adic zeta functions for non-commutative p-extensions of totally real fields with exponent p. Duke Math. J. 158(2), 247–305 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Higman, G.: The units of group rings. Proc. London Math. Soc. 46(2) (1940)

  21. Huber, A., Kings, G.: Equivariant Bloch-Kato conjecture and non-Abelian Iwasawa main conjecture. In: Proceedings of the International Congress of Mathematicians, vol. 2. Higher Ed. Press, Beijing (2002)

    Google Scholar 

  22. Iwasawa, K.: On Z l -extensions of algebraic number fields. Ann. Math. 98(2), 246–326 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kakde, M.: Proof of the main conjecture of noncommutative Iwasawa theory for totally real number fields in certain cases. J. Algebr. Geom. 20, 631–683 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kato, K.: Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via B dR . I. In: Arithmetic Algebraic Geometry. LNM, vol. 1553, pp. 50–163. Springer, Berlin (1993)

    Chapter  Google Scholar 

  25. Kato, K.: K 1 of some non-commutative completed group rings. K-Theory 34, 99–140 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kato, K.: Iwasawa theory of totally real fields for Galois extensions of Heisenberg type (2006). Very preliminary version

  27. Klingen, H.: Über die Werte der Dedekindschen Zetafunktionen. Math. Ann., 265–272 (1962)

  28. Lang, S.: Cyclotomic Fields I and II, GTM, vol. 121. Springer, New York (1990) (With an Appendix by Karl Rubin)

    Book  Google Scholar 

  29. Mazur, B., Wiles, A.: Class fields of Abelian extensions of ℚ. Invent. Math. 76(2), 179–330 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ochi, Y., Venjakob, O.: On the ranks of Iwasawa modules over p-adic Lie extensions. Math. Proc. Camb. Philos. Soc. 135, 25–43 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Oliver, R.: Whitehead Groups of Finite Groups. London Mathematical Society Lecture Note Series, vol. 132. Cambridge University Press, Cambridge (1988)

    Book  MATH  Google Scholar 

  32. Ramakrishna, R.: Deforming Galois representations and the conjectures of Serre and Fontaine-Mazur. Ann. Math. 2(1), 115–154 (2002)

    Article  MathSciNet  Google Scholar 

  33. Ritter, J., Weiss, A.: Towards equivariant Iwasawa theory, II. Indag. Math., N.S. 15(4), 549–572 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ritter, J., Weiss, A.: Towards equivariant Iwasawa theory, IV. Homol. Homotopy Appl. 7, 155–171 (2005)

    MathSciNet  MATH  Google Scholar 

  35. Ritter, J., Weiss, A.: Towards equivariant Iwasawa theory III. Math. Ann. 336(1), 27–49 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ritter, J., Weiss, A.: Congruences between Abelian pseudomeasures. Math. Res. Lett. 15(4), 715–725 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Ritter, J., Weiss, A.: The integral logarithm in Iwasawa theory: an exercise. J. Théor. Nr. Bordx. 22, 197–207 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ritter, J., Weiss, A.: On the ‘main conjecture’ of equivariant Iwasawa theory. J. Acad. Mark. Sci. 24, 1015–1050 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Schneider, P., Venjakob, O.: Localisations and completions of skew power series rings. Am. J. Math. 1, 1–36 (2010)

    Article  MathSciNet  Google Scholar 

  40. Schneider, P., Venjakob, O.: A splitting for K 1 of completed group rings (2010). http://arxiv.org/abs/arXiv:1006.1493

  41. Serre, J.-P.: Linear Representation of Finite Groups. Springer, New York (1977)

    Book  Google Scholar 

  42. Serre, J.-P.: Sur le résidu de la fonction zêta p-adique d’un corps de nombres. C. R. Acad. Sci Paris Sér. A-B 287(4), A183–A188 (1978)

    Google Scholar 

  43. Siegel, C.: Über die Fourierschen Koeffizienten von Modulformen. Göttingen Nachr. 3, 15–56 (1970)

    Google Scholar 

  44. Sinnott, W.: On the μ-invariant of the Γ-transform of a rational function. Invent. Math. 75(2), 273–282 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  45. Vaserstein, L.N.: On stabilization for general linear groups over a ring. Math. USSR Sb. 8, 383–400 (1969)

    Article  MathSciNet  Google Scholar 

  46. Vaserstein, L.N.: On the Whitehead determinant for semi-local rings. J. Algebra 283, 690–699 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wall, C.T.C.: Norms of units in group rings. Proc. Lond. Math. Soc. 29(3), 593–632 (1974)

    Article  MATH  Google Scholar 

  48. Weibel, C.: An introduction to algebraic K-theory (online) (2007). http://www.math.rutgers.edu/~weibel/Kbook.html

  49. Wiles, A.: The Iwasawa conjecture for totally real fields. Ann. Math. 131(3), 493–540 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I have accumulated quite a debt of gratitude in writing this paper. Most of all to my teacher Professor John Coates for introducing me to this problem, many invaluable suggestions and discussions and for constant inspiration. To Professor Kazuya Kato for generously sharing his ideas on the main conjecture with me while I was a graduate student in Cambridge. To Professor David Burns for motivating discussions and much needed encouragement towards the end of this paper. I would like to thank Professor Peter Schneider and Professor Otmar Venjakob for carefully reading an earlier version of the manuscript and pointing out several errors. Much of this work was done while I was visiting Newton Institute for the programme on “Non-Abelian Fundamental Groups in Arithmetic Geometry” and I thank the organisers, especially Professor Minhyong Kim, for inviting me and providing a very stimulating environment. I would like to thank the anonymous referee for careful reading of the manuscript and making many helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Kakde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakde, M. The main conjecture of Iwasawa theory for totally real fields. Invent. math. 193, 539–626 (2013). https://doi.org/10.1007/s00222-012-0436-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-012-0436-x

Mathematics Subject Classification (2010)

Navigation