Skip to main content

Tensor tomography on surfaces


We show that on simple surfaces the geodesic ray transform acting on solenoidal symmetric tensor fields of arbitrary order is injective. This solves a long standing inverse problem in the two-dimensional case.

This is a preview of subscription content, access via your institution.


  1. Anikonov, Yu., Romanov, V.: On uniqueness of determination of a form of first degree by its integrals along geodesics. J. Inverse Ill-Posed Probl. 5, 467–480 (1997)

    MathSciNet  Google Scholar 

  2. Dairbekov, N.S.: Integral geometry problem for nontrapping manifolds. Inverse Probl. 22, 431–445 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  3. Dos Santos Ferreira, D., Kenig, C.E., Salo, M., Uhlmann, G.: Limiting Carleman weights and anisotropic inverse problems. Invent. Math. 178, 119–171 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  4. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library. Wiley, New York (1994). Reprint of the 1978 original

    MATH  Google Scholar 

  5. Guillemin, V., Kazhdan, D.: Some inverse spectral results for negatively curved 2-manifolds. Topology 19, 301–312 (1980)

    MathSciNet  MATH  Article  Google Scholar 

  6. Hörmander, L.: The Analysis of Linear Partial Differential Operators. IV. Fourier Integral Operators. Classics in Mathematics. Springer, Berlin (2009). Reprint of the 1994 edition

    MATH  Book  Google Scholar 

  7. Ivanov, S.: Volume comparison via boundary distances. In: Proceedings of the International Congress of Mathematicians, New Delhi, vol. II, pp. 769–784 (2010)

    Google Scholar 

  8. Michel, R.: Sur la rigidité imposée par la longueur des géodésiques. Invent. Math. 65, 71–83 (1981)

    MathSciNet  MATH  Article  Google Scholar 

  9. Mukhometov, R.G.: The reconstruction problem of a two-dimensional Riemannian metric, and integral geometry. Dokl. Akad. Nauk SSSR 232(1), 32–35 (1977) (Russian)

    MathSciNet  Google Scholar 

  10. Paternain, G.P.: Transparent connections over negatively curved surfaces. J. Mod. Dyn. 3, 311–333 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  11. Paternain, G.P., Salo, M., Uhlmann, G.: The attenuated ray transform for connections and Higgs fields. Geom. Funct. Anal. 22, 1460–1489 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  12. Pestov, L.: Well-Posedness Questions of the Ray Tomography Problems. Siberian Science Press, Novosibirsk (2003) (Russian)

    Google Scholar 

  13. Pestov, L., Sharafutdinov, V.A.: Integral geometry of tensor fields on a manifold of negative curvature. Sib. Math. J. 29, 427–441 (1988)

    MathSciNet  MATH  Article  Google Scholar 

  14. Pestov, L., Uhlmann, G.: On characterization of the range and inversion formulas for the geodesic X-ray transform. Int. Math. Res. Not. 4331–4347 (2004)

  15. Pestov, L., Uhlmann, G.: Two dimensional compact simple Riemannian manifolds are boundary distance rigid. Ann. Math. 161, 1089–1106 (2005)

    MathSciNet  Article  Google Scholar 

  16. Salo, M., Uhlmann, G.: The attenuated ray transform on simple surfaces. J. Differ. Geom. 88, 161–187 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Sharafutdinov, V.A.: Integral Geometry of Tensor Fields. Inverse and Ill-Posed Problems Series. VSP, Utrecht (1994)

    Book  Google Scholar 

  18. Sharafutdinov, V.A.: Integral geometry of a tensor field on a surface of revolution. Sib. Math. J. 38, 603–620 (1997)

    MathSciNet  Article  Google Scholar 

  19. Sharafutdinov, V.A.: A problem in integral geometry in a nonconvex domain. Sib. Math. J. 43, 1159–1168 (2002)

    MathSciNet  Article  Google Scholar 

  20. Sharafutdinov, V.A.: Variations of Dirichlet-to-Neumann map and deformation boundary rigidity of simple 2-manifolds. J. Geom. Anal. 17, 147–187 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  21. Sharafutdinov, V.A., Skokan, M., Uhlmann, G.: Regularity of ghosts in tensor tomography. J. Geom. Anal. 15, 517–560 (2005)

    MathSciNet  Article  Google Scholar 

  22. Singer, I.M., Thorpe, J.A.: Lecture Notes on Elementary Topology and Geometry. Undergraduate Texts in Mathematics. Springer, New York (1976). Reprint of the 1967 edition

    MATH  Book  Google Scholar 

  23. Stefanov, P., Uhlmann, G.: Stability estimates for the X-ray transform of tensor fields and boundary rigidity. Duke Math. J. 123, 445–467 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  24. Stefanov, P., Uhlmann, G.: Boundary and lens rigidity, tensor tomography and analytic microlocal analysis. In: Aoki, T., Majima, H., Katei, Y., Tose, N. (eds.) Algebraic Analysis of Differential Equations, Festschrift in Honor of Takahiro Kawai, pp. 275–293 (2008)

    Chapter  Google Scholar 

  25. Stefanov, P., Uhlmann, G.: Linearizing non-linear inverse problems and its applications to inverse backscattering. J. Funct. Anal. 256, 2842–2866 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  26. Thorbergsson, G.: Closed geodesics on non-compact Riemannian manifolds. Math. Z. 159, 249–258 (1978)

    MathSciNet  MATH  Article  Google Scholar 

Download references


M.S. was supported in part by the Academy of Finland, and G.U. was partly supported by NSF and a Rothschild Distinguished Visiting Fellowship at the Isaac Newton Institute. The authors would like to express their gratitude to the Newton Institute and the organizers of the program on Inverse Problems in 2011 where this work was carried out. They would also like to thank the referees for their constructive and useful comments.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Gunther Uhlmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Paternain, G.P., Salo, M. & Uhlmann, G. Tensor tomography on surfaces. Invent. math. 193, 229–247 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Tensor Field
  • Carleman Estimate
  • Simple Surface
  • Commutator Formula
  • Canonical Line Bundle