Inventiones mathematicae

, Volume 192, Issue 3, pp 627–661 | Cite as

The Langlands-Kottwitz approach for some simple Shimura varieties

  • Peter ScholzeEmail author


We show how the Langlands-Kottwitz method can be used to determine the semisimple local factors of the Hasse-Weil zeta-function of certain Shimura varieties. This is made possible by a new result describing part of the nearby cycle sheaves in certain situations. In combination with a general base-change lemma in harmonic analysis, we use this to prove a conjecture of Haines and Kottwitz for these Shimura varieties.


Special Fibre Compact Open Subgroup Shimura Variety Parahoric Subgroup Principal Congruence Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I thank my advisor M. Rapoport for introducing me to this area, his constant encouragement during the process of writing this paper, and his interest in these ideas. Moreover, I am grateful for the financial support of the Hausdorff Center for Mathematics in Bonn and the hospitality of the Institut Henri Poincaré, where part of this work was done.


  1. 1.
    Arthur, J., Clozel, L.: Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula. Annals of Mathematics Studies, vol. 120. Princeton University Press, Princeton (1989) zbMATHGoogle Scholar
  2. 2.
    Bernstein, I.N., Zelevinsky, A.V.: Induced representations of reductive p-adic groups. I. Ann. Sci. Éc. Norm. Super. 10(4), 441–472 (1977) MathSciNetzbMATHGoogle Scholar
  3. 3.
    Brieskorn, E.: Sur les groupes de tresses [d’après V.I. Arnol’d]. In: Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401. Lecture Notes in Math., vol. 317, pp. 21–44. Springer, Berlin (1973) CrossRefGoogle Scholar
  4. 4.
    Casselman, W.: Characters and Jacquet modules. Math. Ann. 230(2), 101–105 (1977) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Clozel, L.: The fundamental lemma for stable base change. Duke Math. J. 61(1), 255–302 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Drinfel’d, V.G.: Elliptic modules. Mat. Sb. 94(136), 594–627 (1974) MathSciNetGoogle Scholar
  7. 7.
    Folkman, J.: The homology groups of a lattice. J. Math. Mech. 15, 631–636 (1966) MathSciNetzbMATHGoogle Scholar
  8. 8.
    Haines, T., Ngô, B.C.: Nearby cycles for local models of some Shimura varieties. Compos. Math. 133(2), 117–150 (2002) zbMATHCrossRefGoogle Scholar
  9. 9.
    Haines, T., Rapoport, M.: Shimura varieties with Γ 1(p)-level structure. arXiv:1005.2558
  10. 10.
    Haines, T.J.: Introduction to Shimura varieties with bad reduction of parahoric type. In: Harmonic Analysis, the Trace Formula, and Shimura Varieties. Clay Math. Proc., vol. 4, pp. 583–642. Amer. Math. Soc., Providence (2005) Google Scholar
  11. 11.
    Haines, T.J.: The base change fundamental lemma for central elements in parahoric Hecke algebras. Duke Math. J. 149(3), 569–643 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Harris, M., Taylor, R.: The Geometry and Cohomology of Some Simple Shimura Varieties. Annals of Mathematics Studies, vol. 151. Princeton University Press, Princeton (2001). With an appendix by Vladimir G. Berkovich zbMATHGoogle Scholar
  13. 13.
    Henniart, G.: La conjecture de Langlands locale numérique pour GL(n). Ann. Sci. Éc. Norm. Super. 21(4), 497–544 (1988) MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kazhdan, D.: Cuspidal geometry of p-adic groups. J. Anal. Math. 47, 1–36 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Kottwitz, R.E.: On the λ-adic representations associated to some simple Shimura varieties. Invent. Math. 108(3), 653–665 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kottwitz, R.E.: Points on some Shimura varieties over finite fields. J. Am. Math. Soc. 5(2), 373–444 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Langlands, R.P.: Modular forms and -adic representations. In: Modular Functions of One Variable, II. Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972. Lecture Notes in Math., vol. 349, pp. 361–500. Springer, Berlin (1973) CrossRefGoogle Scholar
  18. 18.
    Schneider, P., Stuhler, U.: The cohomology of p-adic symmetric spaces. Invent. Math. 105(1), 47–122 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Scholze, P.: The Langlands-Kottwitz approach for the modular curve. Int. Math. Res. Not. IMRN (15), 3368–3425 (2011) Google Scholar
  20. 20.
    Scholze, P.: The Langlands-Kottwitz method and deformation spaces of p-divisible groups. J. Am. Math. Soc. (2011, to appear). arXiv:1110.0230
  21. 21.
    Scholze, P.: The Local Langlands Correspondence for GLn over p-adic fields. Invent. Math. (2012). doi: 10.1007/s00222-012-0420-5 zbMATHGoogle Scholar
  22. 22.
    Scholze, P., Shin, S.W.: On the cohomology of compact unitary group Shimura varieties at ramified split places. J. Am. Math. Soc. (2011, to appear). arXiv:1110.0232
  23. 23.
    Thomason, R.: Absolute cohomological purity. Bull. Soc. Math. Fr. 112(3), 397–406 (1984) MathSciNetzbMATHGoogle Scholar
  24. 24.
    Yoshida, T.: On non-abelian Lubin-Tate theory via vanishing cycles. In: Algebraic and Arithmetic Structures of Moduli Spaces, Sapporo, 2007. Adv. Stud. Pure Math., vol. 58, pp. 361–402. Math. Soc. Japan, Tokyo (2010) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Mathematisches Institut der Universität BonnBonnGermany

Personalised recommendations