Inventiones mathematicae

, Volume 192, Issue 1, pp 55–69

W2,1 regularity for solutions of the Monge–Ampère equation

Article

Abstract

In this paper we prove that a strictly convex Alexandrov solution u of the Monge–Ampère equation, with right-hand side bounded away from zero and infinity, is \(W^{2,1}_{\mathrm{loc}}\). This is obtained by showing higher integrability a priori estimates for D2u, namely D2uLlogkL for any k∈ℕ.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosio, L.: Transport Equation and Cauchy Problem for Non-Smooth Vector Fields. In: Calculus of Variations and Nonlinear Partial Differential Equations. Lecture Notes in Math., vol. 1927, pp. 1–41. Springer, Berlin (2008) CrossRefGoogle Scholar
  2. 2.
    Ambrosio, L., De Philippis, G., Kirchheim, B.: Regularity of optimal transport maps and partial differential inclusions. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 22(3), 311–336 (2011) MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brenier, Y.: Décomposition polaire et réarrangement monotone des champs de vecteurs. C. R. Acad. Sci. Paris Sér. I Math. 305(19), 805–808 (1987) MathSciNetMATHGoogle Scholar
  4. 4.
    Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991) MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Caffarelli, L.: A localization property of viscosity solutions to the Monge–Ampère equation and their strict convexity. Ann. Math. (2) 131(1), 129–134 (1990) MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Caffarelli, L.: Interior W 2,p estimates for solutions of the Monge–Ampère equation. Ann. Math. (2) 131(1), 135–150 (1990) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Caffarelli, L.: Some regularity properties of solutions to Monge–Ampére equations. Commun. Pure Appl. Math. 44, 965–969 (1991) MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Caffarelli, L.: The regularity of mappings with a convex potential. J. Am. Math. Soc. 5, 99–104 (1992) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Caffarelli, L., Gutierrez, C.: Real analysis related to the Monge–Ampère equation. Trans. Am. Math. Soc. 348, 1075–1092 (1996) MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Figalli, A., Kim, Y.-H.: Partial regularity of Brenier solutions of the Monge–Ampr̀e equation. Discrete Contin. Dyn. Syst., Ser. A 28(2), 559–565 (2010) MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gutierrez, C.: The Monge–Ampére Equation. Progress in Nonlinear Differential Equations and Their Applications, vol. 44. Birkhäuser, Boston (2001) CrossRefMATHGoogle Scholar
  12. 12.
    Gutierrez, C., Huang, Q.: Geometric properties of the sections of solutions to the Monge–Ampère equation. Trans. Am. Math. Soc. 352(9), 4381–4396 (2000) MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    John, F.: Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, pp. 187–204. Interscience, New York (1948) Google Scholar
  14. 14.
    Savin, O.: A localization property at the boundary for the Monge–Ampère equation. Preprint (2010) Google Scholar
  15. 15.
    Savin, O.: Global W 2,p estimates for the Monge–Ampère equations. Preprint (2010) Google Scholar
  16. 16.
    Stein, E.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. In: With the Assistance of Timothy S. Murphy. Monographs in Harmonic Analysis, III. Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993) Google Scholar
  17. 17.
    Urbas, J.I.E.: Regularity of generalized solutions of Monge–Ampère equations. Math. Z. 197(3), 365–393 (1988) MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Wang, X.-J.: Some counterexamples to the regularity of Monge–Ampère equations. Proc. Am. Math. Soc. 123(3), 841–845 (1995) (English summary) MATHGoogle Scholar
  19. 19.
    Zygmund, A.: Trigonometric Series, 2nd edn., vol. I. Cambridge University Press, New York (1959) MATHGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Scuola Normale SuperiorePisaItaly
  2. 2.Department of MathematicsThe University of Texas at AustinAustinUSA

Personalised recommendations