Skip to main content

Asymptotic syzygies of algebraic varieties

Abstract

We study the asymptotic behavior of the syzygies of a smooth projective variety as the positivity of the embedding line bundle grows. The main result asserts that the syzygy modules are non-zero in almost all degrees allowed by Castelnuovo–Mumford regularity. We also give an effective statement for Veronese varieties that we conjecture to be optimal.

This is a preview of subscription content, access via your institution.

References

  1. Aprodu, M.: Green–Lazarsfeld gonality conjecture for a generic curve of odd genus. Int. Math. Res. Not. 63, 3409–3416 (2004)

    Article  MathSciNet  Google Scholar 

  2. Aprodu, M., Voisin, C.: Green–Lazarsfeld’s conjecture for generic curves of large gonality. C. R. Math. Acad. Sci. Paris 336, 335–339 (2003)

    MATH  Article  MathSciNet  Google Scholar 

  3. Bombieri, E.: Canonical models of surfaces of general type. Publ. Math. IHÉS 42, 171–219 (1973)

    MathSciNet  Google Scholar 

  4. Bruns, W., Conca, A., Römer, T.: Koszul homology and syzygies of Veronese subalgebras. Math. Ann. 351, 761–779 (2011)

    MATH  Article  MathSciNet  Google Scholar 

  5. Bruns, W., Conca, A., Römer, T.: Koszul cycles. In: Combinatorial Aspects of Commutative Algebra and Algebraic Geometry. Proceedings of the Abel Symposium 2009, pp. 17–32 (2011)

    Chapter  Google Scholar 

  6. Castelnuovo, G.: Sui multipli di uni serie lineare di gruppi di punti apparetmenente as una curva algebrica. Rend. Circ. Mat. Palermo 7, 99–119 (1893)

    Article  Google Scholar 

  7. Catanese, F.: Babbage’s conjecture, contact of surfaces, symmetric determinantal varieties and applications. Invent. Math. 63, 433–465 (1981)

    MATH  Article  MathSciNet  Google Scholar 

  8. Catanese, F.: Commutative algebra methods and equations of regular surfaces. In: Algebraic Geometry, Bucharest 1982. Lecture Notes in Math., vol. 1056, pp. 30–50. Springer, Berlin (1983)

    Google Scholar 

  9. Ein, L., Lazarsfeld, R.: Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension. Invent. Math. 111, 51–67 (1993)

    MATH  Article  MathSciNet  Google Scholar 

  10. Eisenbud, D.: The Geometry of Syzygies. Graduate Texts in Math., vol. 229. Springer, Berlin (2005)

    MATH  Google Scholar 

  11. Eisenbud, D., Green, M., Hulek, K., Popescu, S.: Restricting linear syzygies: algebra and geometry. Compos. Math. 141, 1460–1478 (2005)

    MATH  Article  MathSciNet  Google Scholar 

  12. Eisenbud, D., Schreyer, F.: Betti numbers of graded modules and cohomology of vector bundles. J. Am. Math. Soc. 22, 859–888 (2009)

    MATH  Article  MathSciNet  Google Scholar 

  13. Green, M.: Koszul cohomology and the geometry of projective varieties. J. Differ. Geom. 19, 125–171 (1984)

    MATH  Google Scholar 

  14. Green, M.: Koszul cohomology and the geometry of projective varieties, II. J. Differ. Geom. 20, 279–289 (1984)

    MATH  Google Scholar 

  15. Green, M., Lazarsfeld, R.: A simple proof of Petri’s theorem on canonical curves. In: Geometry Today (Rome 1984). Progr. Math., vol. 60. Birkhäuser, Basel (1985)

    Google Scholar 

  16. Green, M., Lazarsfeld, R.: Some results on the syzygies of finite sets and algebraic curves. Compos. Math. 67, 301–314 (1988)

    MATH  MathSciNet  Google Scholar 

  17. Green, M., Lazarsfeld, R.: On the projective normality of complete linear series on an algebraic curve. Invent. Math. 83, 73–90 (1985)

    Article  MathSciNet  Google Scholar 

  18. Hering, M., Schenck, H., Smith, G.: Syzygies, multigraded regularity and toric varieties. Compos. Math. 142, 1499–1506 (2006)

    MATH  Article  MathSciNet  Google Scholar 

  19. Lazarsfeld, R.: A sampling of vector bundle techniques in the study of linear series. In: Lectures on Riemann Surfaces, pp. 500–559. World Scientific, Singapore (1989)

    Google Scholar 

  20. Maclagan, D., Smith, G.: Multigraded Castelnuovo–Mumford regularity. J. Reine Angew. Math. 571, 179–212 (2004)

    MATH  MathSciNet  Google Scholar 

  21. Mumford, D.: On the equations defining abelian varieties. Invent. Math. 1, 287–354 (1966)

    Article  MathSciNet  Google Scholar 

  22. Mumford, D.: Varieties defined by quadratic equations. In: Questions on Algebraic Varieties, Corso CIME 1969, Rome, pp. 30–100 (1970)

    Google Scholar 

  23. Ottaviani, G., Paoletti, R.: Syzygies of Veronese embeddings. Compos. Math. 125, 31–37 (2001)

    MATH  Article  MathSciNet  Google Scholar 

  24. Pareschi, G.: Syzygies of abelian varieties. J. Am. Math. Soc. 13, 651–664 (2000)

    MATH  Article  MathSciNet  Google Scholar 

  25. Rubei, E.: A result on resolutions of Veronese embeddings. Ann. Univ. Ferrara, Sez. 7 50, 151–165 (2004)

    MATH  MathSciNet  Google Scholar 

  26. Schreyer, F.: Syzygies of canonical curves and special linear series. Math. Ann. 275, 105–137 (1986)

    MATH  Article  MathSciNet  Google Scholar 

  27. Sidman, J., Van Tuyl, A., Wang, H.: Multigraded regularity: coarsenings and resolutions. J. Algebra 301, 703–727 (2006)

    MATH  Article  MathSciNet  Google Scholar 

  28. Snowden, A.: Syzygies of Segre varieties and Δ functors. To appear

  29. Zhou, X.: Thesis in preparation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Lazarsfeld.

Additional information

Research of the first author partially supported by NSF grant DMS-1001336.

Research of the second author partially supported by NSF grant DMS-0652845.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ein, L., Lazarsfeld, R. Asymptotic syzygies of algebraic varieties. Invent. math. 190, 603–646 (2012). https://doi.org/10.1007/s00222-012-0384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-012-0384-5

Keywords

  • Vector Bundle
  • Algebraic Variety
  • Smooth Projective Variety
  • Ample Divisor
  • Segre Variety