Skip to main content
Log in

The class of the locus of intermediate Jacobians of cubic threefolds

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We study the locus of intermediate Jacobians of cubic threefolds within the moduli space \(\mathcal{A}_{5}\) of complex principally polarized abelian fivefolds, and its generalization to arbitrary genus—the locus of abelian varieties with a singular odd two-torsion point on the theta divisor. Assuming that this locus has expected codimension g (which we show to be true for g≤5, and conjecturally for any g), we compute the class of this locus, and of its closure in the perfect cone toroidal compactification \(\mathcal{A}_{g}^{\mathrm{Perf}}\), in the Chow, homology, and the tautological ring.

We work out the cases of genus up to 5 in detail, obtaining explicit expressions for the class of the closure of \(\mathcal{A}_{1}\times \theta_{\mathrm{null}}\) in \(\mathcal{A}_{4}^{\mathrm{Perf}}\), and for the class of the locus of intermediate Jacobians (together with the same locus of products)—in \(\mathcal{A}_{5}^{\mathrm{Perf}}\). Finally, we obtain some results on the geometry of the boundary of the locus of intermediate Jacobians of cubic threefolds in \(\mathcal{A}_{5}^{\mathrm{Perf}}\).

In the course of our computation we also deal with various intersections of boundary divisors of a level toroidal compactification, which is of independent interest in understanding the cohomology and Chow rings of the moduli spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexeev, V.: Complete moduli in the presence of semiabelian group action. Ann. Math. (2) 155(3), 611–708 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allcock, D., Carlson, J., Toledo, D.: The moduli space of cubic threefolds as a ball quotient. Mem. Am. Math. Soc. 209(985), xii+70 (2011)

    MathSciNet  Google Scholar 

  3. Beauville, A.: Prym varieties and the Schottky problem. Invent. Math. 41(2), 149–196 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beauville, A.: Les singularités du diviseur Θ de la jacobienne intermédiaire de l’hypersurface cubique dans P 4. In: Algebraic Threefolds, Varenna, 1981. Lecture Notes in Math., vol. 947, pp. 190–208. Springer, Berlin (1982)

    Chapter  Google Scholar 

  5. Boldsen, S.: Improved homological stability for the mapping class group with integral or twisted coefficients. Preprint arXiv:0904.3269 (2009)

  6. Casalaina-Martin, S.: Cubic threefolds and abelian varieties of dimension five. II. Math. Z. 260(1), 115–125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Casalaina-Martin, S.: Singularities of theta divisors in algebraic geometry. In: Curves and Abelian Varieties. Contemp. Math., vol. 465, pp. 25–43. Am. Math. Soc, Providence (2008)

    Chapter  Google Scholar 

  8. Casalaina-Martin, S., Friedman, R.: Cubic threefolds and abelian varieties of dimension five. J. Algebr. Geom. 14(2), 295–326 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Casalaina-Martin, S., Laza, R.: The moduli space of cubic threefolds via degenerations of the intermediate Jacobian. J. Reine Angew. Math. 633, 29–65 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ciliberto, C., van der Geer, G.: The moduli space of abelian varieties and the singularities of the theta divisor. In: Surveys in Differential Geometry. Surv. Differ. Geom., vol. VII, pp. 61–81. Int. Press, Somerville (2000)

    Google Scholar 

  11. Ciliberto, C., van der Geer, G.: Andreotti-Mayer loci and the Schottky problem. Doc. Math. 13, 453–504 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Clemens, H., Griffiths, P.: The intermediate Jacobian of the cubic threefold. Ann. Math. 95, 281–356 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Debarre, O.: Le lieu des variétés abéliennes dont le diviseur thêta est singulier a deux composantes. Ann. Sci. Éc. Norm. Super. (4) 25(6), 687–707 (1992)

    MathSciNet  MATH  Google Scholar 

  14. Donagi, R.: Big Schottky. Invent. Math. 89(3), 569–599 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Donagi, R.: Non-Jacobians in the Schottky loci. Ann. Math. 126(1), 193–217 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Donagi, R.: The fibers of the Prym map. In: Curves, Jacobians, and Abelian Varieties, Amherst, MA, 1990. Contemp. Math., vol. 136, pp. 55–125. Am. Math. Soc., Providence (1992)

    Chapter  Google Scholar 

  17. Donagi, R., Smith, R.: The structure of the Prym map. Acta Math. 146(1–2), 25–102 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ekedahl, T., van der Geer, G.: Cycles representing the top Chern class of the Hodge bundle on the moduli space of abelian varieties. Duke Math. J. 129(1), 187–199 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Erdahl, R., Ryshkov, S.: The empty sphere. II. Can. J. Math. 40(5), 1058–1073 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Erdenberger, C.: A finiteness result for Siegel modular threefolds. Ph.D. thesis, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany (2007)

  21. Erdenberger, C., Grushevsky, S., Hulek, K.: Some intersection numbers of divisors on toroidal compactifications of \(\mathcal{A}_{g}\). J. Algebr. Geom. 19, 99–132 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Esnault, H., Viehweg, E.: Chern classes of Gauss-Manin bundles of weight 1 vanish. K-Theory 26(3), 287–305 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Faber, C.: A non-vanishing result for the tautological ring of \(\mathcal{M}_{g}\). Preprint arXiv:math/9711219 (1997)

  24. Faber, C.: Algorithms for computing intersection numbers on moduli spaces of curves, with an application to the class of the locus of Jacobians. In: New Trends in Algebraic Geometry, Warwick, 1996. London Math. Soc. Lecture Note Ser., vol. 264, pp. 93–109. Cambridge Univ. Press, Cambridge (1999)

    Chapter  Google Scholar 

  25. Faber, C.: A conjectural description of the tautological ring of the moduli space of curves. In: Moduli of Curves and Abelian Varieties. Aspects Math., vol. E33, pp. 109–129. Vieweg, Braunschweig (1999)

    Chapter  Google Scholar 

  26. Fulton, W.: Intersection Theory, 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 2. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  27. Graber, T., Vakil, R.: Relative virtual localization and vanishing of tautological classes on moduli spaces of curves. Duke Math. J. 130(1), 1–37 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Grushevsky, S., Hulek, K.: Principally polarized semiabelic varieties of torus rank up to 3, and the Andreotti-Mayer loci. Pure Appl. Math. Q., special issue in memory of Eckart Viehweg 75(4), 1309–1360 (2011). Preprint arXiv:1103.1858

    MathSciNet  Google Scholar 

  29. Grushevsky, S., Salvati Manni, R.: Gradients of odd theta functions. J. Reine Angew. Math. 573, 45–59 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Grushevsky, S., Salvati Manni, R.: Singularities of the theta divisor at points of order two. Int. Math. Res. Not. 15, Art. ID rnm045, 15 (2007)

  31. Grushevsky, S., Salvati Manni, R.: The loci of abelian varieties with points of high multiplicity on the theta divisor. Geom. Dedic. 139, 233–247 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hain, R.: The rational cohomology ring of the moduli space of abelian 3-folds. Math. Res. Lett. 9(4), 473–491 (2002)

    MathSciNet  MATH  Google Scholar 

  33. Harris, J.: Theta-characteristics on algebraic curves. Trans. Am. Math. Soc. 271(2), 611–638 (1982)

    Article  MATH  Google Scholar 

  34. Hulek, K., Sankaran, G.: The nef cone of toroidal compactifications of \(\mathcal{A}_{4}\). Proc. Lond. Math. Soc. 88(3), 659–704 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hulek, K., Tommasi, O.: Cohomology of the toroidal compactification of \(\mathcal{A}_{3}\). In: Proceedings of the Conference in honour of S. Ramanan. Contemp. Math., vol. 522, pp. 89–103 (2010)

    Google Scholar 

  36. Hulek, K., Kahn, C., Weintraub, S.: Moduli Spaces of Abelian Surfaces: Compactification, Degenerations, and Theta Functions. de Gruyter Expositions in Mathematics, vol. 12. de Gruyter, Berlin (1993)

    Book  MATH  Google Scholar 

  37. Igusa, J.-I.: On Siegel modular forms of genus two. Am. J. Math. 84, 175–200 (1962)

    Article  MathSciNet  Google Scholar 

  38. Igusa, J.-I.: Theta Functions. Grundlehren der Mathematischen Wissenschaften, vol. 194 (1972)

    Book  MATH  Google Scholar 

  39. Ionel, E.-N.: Topological recursive relations in \(H^{2g}(\mathcal{M}_{g,n})\). Invent. Math. 148(3), 627–658 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Looijenga, E.: On the tautological ring of \(\mathcal{M}_{g}\). Invent. Math. 121(2), 411–419 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  41. Madsen, I., Weiss, M.: The stable moduli space of Riemann surfaces: Mumford’s conjecture. Ann. Math. 165(3), 843–941 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mumford, D.: Prym varieties. I. In: Contributions to Analysis (A Collection of Papers Dedicated to Lipman Bers), pp. 325–350. Academic Press, New York (1974)

    Google Scholar 

  43. Mumford, D.: Hirzebruch’s proportionality theorem in the noncompact case. Invent. Math. 42, 239–272 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mumford, D.: Towards an enumerative geometry of the moduli space of curves. In: Progr. Math., vol. 36, pp. 271–328. Birkhäuser Boston, Boston (1983)

    Google Scholar 

  45. Namikawa, Y.: Toroidal Compactification of Siegel Spaces. Lecture Notes in Mathematics, vol. 812. Springer, Berlin (1980)

    MATH  Google Scholar 

  46. Ryškov, S., Baranovskiĭ, E.: C-types of n-dimensional lattices and 5-dimensional primitive parallelohedra (with application to the theory of coverings). Proc. Steklov Inst. Math. 4, 140 (1978). Cover to cover translation of Trudy Mat. Inst. Steklov 137 (1976), Translated by R.M. Erdahl

    Google Scholar 

  47. Shepherd-Barron, N.: Perfect forms and the moduli space of abelian varieties. Invent. Math. 163(1), 25–45 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Teixidor i Bigas, M.: The divisor of curves with a vanishing theta-null. Compos. Math. 66(1), 15–22 (1988)

    MathSciNet  MATH  Google Scholar 

  49. van der Geer, G.: The Chow ring of the moduli space of abelian threefolds. J. Algebr. Geom. 7(4), 753–770 (1998)

    MathSciNet  MATH  Google Scholar 

  50. van der Geer, G.: Cycles on the moduli space of Abelian varieties. In: Aspects Math., vol. E33, pp. 65–89. Vieweg, Braunschweig (1999)

    Google Scholar 

  51. van der Geer, G.: Corrigendum: “The Chow ring of the moduli space of abelian threefolds”. J. Algebr. Geom. 18(4), 795–796 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Hulek.

Additional information

Research of the first author is supported in part by National Science Foundation under the grant DMS-10-53313.

Research of the second author is supported in part by DFG grants Hu-337/6-1 and Hu-337/6-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grushevsky, S., Hulek, K. The class of the locus of intermediate Jacobians of cubic threefolds. Invent. math. 190, 119–168 (2012). https://doi.org/10.1007/s00222-012-0377-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-012-0377-4

Keywords

Navigation