Skip to main content
Log in

An optimal gap theorem

  • Published:
Inventiones mathematicae Aims and scope

An Erratum to this article was published on 18 October 2013

Abstract

By solving the Cauchy problem for the Hodge-Laplace heat equation for d-closed, positive (1,1)-forms, we prove an optimal gap theorem for Kähler manifolds with nonnegative bisectional curvature which asserts that the manifold is flat if the average of the scalar curvature over balls of radius r centered at any fixed point o is a function of o(r −2). Furthermore via a relative monotonicity estimate we obtain a stronger statement, namely a ‘positive mass’ type result, asserting that if (M,g) is not flat, then \(\liminf_{r\to\infty} \frac {r^{2}}{V_{o}(r)}\int_{B_{o}(r)}\mathcal{S}(y)\, d\mu(y)>0\) for any oM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrose, W., Singer, I.M.: A theorem on holonomy. Trans. Am. Math. Soc. 75, 428–443 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrews, B., Clutterbuck, J.: Proof of the fundamental gap conjecture. J. Am. Math. Soc. 24, 899–916 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Böhm, C., Wilking, B.: Nonnegatively curved manifolds with finite fundamental groups admit metrics with positive Ricci curvature. Geom. Funct. Anal. 17(3), 665–681 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bony, J.M.: Principe du maximum, inǵalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier 19(1), 277–304 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, H.-D., Ni, L.: Matrix Li-Yau-Hamilton estimates for the heat equation on Kähler manifolds. Math. Ann. 331(4), 795–807 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, B.-L., Zhu, X.-P.: On complete noncompact Kähler manifolds with positive bisectional curvature. Math. Ann. 327(1), 1–23 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ecker, K.: Regularity Theory for Mean Curvature Flow. Progress in Nonlinear Differential Equations and Their Applications, vol. 57. Birkhäuser, Boston (2004)

    Book  MATH  Google Scholar 

  8. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice Hall, New York (1964)

    MATH  Google Scholar 

  9. Greene, R.-E., Wu, H.: Function Theory on Manifolds Which Process a Pole. Springer, Berlin (1979)

    Google Scholar 

  10. Greene, R.-E., Wu, H.: Gap theorems for noncompact Riemannian manifolds. Duke Math. J. 49(3), 731–756 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hamilton, R.: Four-manifolds with positive curvature operator. J. Differ. Geom. 24, 153–179 (1986)

    MathSciNet  MATH  Google Scholar 

  12. Hill, C.D.: A sharp maximum principle for degenerate elliptic-parabolic equations. Indiana Univ. Math. J. 20, 213–229 (1970/1971)

    Article  MathSciNet  Google Scholar 

  13. Ladyzenskaja, O.-A., Ural’ceva, N.-N.: A boundary-value problem for linear and quasi-linear parabolic equations. I. Izv. Akad. Nauk SSSR Ser. Mat. 26, 5–52 (1962) (Russian)

    Google Scholar 

  14. Ladyzenskaja, O.-A., Ural’ceva, N.-N.: A boundary-value problem for linear and quasi-linear parabolic equations. II. Izv. Akad. Nauk SSSR Ser. Mat. 26, 753–780 (1962) (Russian)

    Google Scholar 

  15. Ladyzenskaja, O.-A., Ural’ceva, N.-N.: A boundary-value problem for linear and quasi-linear parabolic equations. III. Izv. Akad. Nauk SSSR Ser. Mat. 27, 161–240 (1962) (Russian)

    MathSciNet  Google Scholar 

  16. Li, P., Tam, L.-F.: The heat equation and harmonic maps of complete manifolds. Invent. Math. 105, 1–46 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, P., Wang, J.: Comparison theorem for Kähler manifolds and positivity of spectrum. J. Differ. Geom. 69(1), 43–74 (2005)

    MATH  Google Scholar 

  18. Li, P., Yau, S.-T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3–4), 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  19. Mok, N., Siu, Y.-T., Yau, S.-T.: The Poincaré-Lelong equation on complete Kähler manifolds. Compos. Math. 44, 183–218 (1981)

    MathSciNet  Google Scholar 

  20. Morrey, C.: Multiple Integrals in Calculus of Variations. Springer, New York (1966)

    MATH  Google Scholar 

  21. Ni, L.: Vanishing theorems on complete Kähler manifolds and their applications. J. Differ. Geom. 50(1), 89–122 (1998)

    MATH  Google Scholar 

  22. Ni, L.: The Poisson equation and Hermitian-Einstein metrics on holomorphic vector bundles over complete noncompact Kähler manifolds. Indiana Univ. Math. J. 51, 679–704 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ni, L.: A monotonicity formula on complete Kähler manifolds with nonnegative bisectional curvature. J. Am. Math. Soc. 17(4), 909–946 (2004) (electronic)

    Article  MATH  Google Scholar 

  24. Ni, L.: A matrix Li-Yau-Hamilton estimate for Kähler-Ricci flow. J. Differ. Geom. 75(2), 303–358 (2007)

    MATH  Google Scholar 

  25. Ni, L., Niu, Y.Y.: Sharp differential estimates of Li-Yau-Hamilton type for positive (p,p)-forms on Kähler manifolds. Commun. Pure Appl. Math. 64, 920–974 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ni, L., Tam, L.-F.: Plurisubharmonic functions and the structure of complete Kähler manifolds with nonnegative curvature. J. Differ. Geom. 64(3), 457–524 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Ni, L., Tam, L.-F.: Poincaré-Lelong equation via the Hodge-Laplace heat equation. arXiv:1109.6102

  28. Ni, L., Shi, Y., Tam, L.-F.: Poisson equation, Poincaré-Lelong equation and curvature decay on complete Kähler manifolds. J. Differ. Geom. 57(2), 339–388 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Pulemotov, A.: The Hopf boundary point lemma for vector bundle sections. Comment. Math. Helv. 83(2), 407–419 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ray, D.B., Singer, I.M.: R-torsion and the Laplacian on Riemannian manifolds. Adv. Math. 7, 145–210 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  31. Redheffer, R., Walter, W.: Invariant sets for systems of partial differential equations I. Parabolic equations. Arch. Ration. Mech. Anal. 67, 41–52 (1978)

    Article  MathSciNet  Google Scholar 

  32. Simon, L.: Schauder estimates by scaling. Calc. Var. Partial Differ. Equ. 5(5), 391–407 (1997)

    Article  MATH  Google Scholar 

  33. Weinberger, H.: Invariant sets for weakly coupled parabolic and elliptic systems. Rend. Mat. (6) 8, 295–310 (1975)

    MathSciNet  MATH  Google Scholar 

  34. Wu, H., Zheng, F.-Y.: Examples of positively curved complete Kähler manifolds. In: Geometry and Analysis, vol. I. Advanced Lectures in Mathematics, vol. 17, pp. 517–542 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Ni.

Additional information

The author was supported in part by NSF grant DMS-1105549.

An erratum to this article is available at http://dx.doi.org/10.1007/s00222-013-0487-7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, L. An optimal gap theorem. Invent. math. 189, 737–761 (2012). https://doi.org/10.1007/s00222-012-0375-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-012-0375-6

Keywords

Navigation