Skip to main content
Log in

Positivity of relative canonical bundles and applications

  • Published:
Inventiones mathematicae Aims and scope

An Erratum to this article was published on 23 February 2013

Abstract

Given a family \(f:\mathcal{X} \to S\) of canonically polarized manifolds, the unique Kähler–Einstein metrics on the fibers induce a hermitian metric on the relative canonical bundle \(\mathcal{K}_{\mathcal{X}/S}\). We use a global elliptic equation to show that this metric is strictly positive on \(\mathcal{X}\), unless the family is infinitesimally trivial.

For degenerating families we show that the curvature form on the total space can be extended as a (semi-)positive closed current. By fiber integration it follows that the generalized Weil–Petersson form on the base possesses an extension as a positive current. We prove an extension theorem for hermitian line bundles, whose curvature forms have this property. This theorem can be applied to a determinant line bundle associated to the relative canonical bundle on the total space. As an application the quasi-projectivity of the moduli space \(\mathcal{M}_{\text{can}}\) of canonically polarized varieties follows.

The direct images \(R^{n-p}f_{*}\Omega^{p}_{\mathcal{X}/S}(\mathcal {K}_{\mathcal{X}/S}^{\otimes m})\), m>0, carry natural hermitian metrics. We prove an explicit formula for the curvature tensor of these direct images. We apply it to the morphisms \(S^{p}\mathcal{T}_{S} \to R^{p}f_{*}\Lambda^{p}\mathcal{T}_{\mathcal{X}/S}\) that are induced by the Kodaira–Spencer map and obtain a differential geometric proof for hyperbolicity properties of \(\mathcal{M}_{\text{can}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abate, M., Patrizio, G.: Holomorphic curvature of Finsler metrics and complex geodesics. J. Geom. Anal. 6, 341–363 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artin, M.: Algebraization of formal moduli II, existence of modifications. Ann. Math. 91, 88–135 (1970). Global analysis. Papers in Honor of K. Kodaira 21–71 (1969)

    Article  MathSciNet  Google Scholar 

  3. Aubin, T.: Equation du type de Monge–Ampère sur les variétés Kähleriennes compactes. C. R. Acad. Sci. Paris 283, 119–121 (1976). Bull. Sci. Math. 102, 63–95 (1978)

    MathSciNet  MATH  Google Scholar 

  4. Bedulev, E., Viehweg, E.: Shafarevich conjecture for surfaces of general type over function fields. Invent. Math. 139, 603–615 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berndtsson, B.: Curvature of vector bundles associated to holomorphic fibrations. Ann. Math. 169, 531–560 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berndtsson, B.: Strict and nonstrict positivity of direct image bundles, preprint. Personal communication

  7. Berndtsson, B., Paun, M.: Bergman kernels and the pseudoeffectivity of relative canonical bundles. Duke Math. J. 145, 341–378 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bismut, J.-M., Gillet, H., Soulé, Ch.: Analytic torsion and holomorphic determinant bundles I. Commun. Math. Phys. 115, 49–78 (1988)

    Article  MATH  Google Scholar 

  9. Bismut, J.-M., Gillet, H., Soulé, Ch.: Analytic torsion and holomorphic determinant bundles II. Commun. Math. Phys. 115, 79–126 (1988)

    Article  Google Scholar 

  10. Bismut, J.-M., Gillet, H., Soulé, Ch.: Analytic torsion and holomorphic determinant bundles III. Commun. Math. Phys. 115, 301–351 (1988)

    Article  Google Scholar 

  11. Boucksom, S., Eyssidieux, P., Guedj, V., Zeriahi, A.: Monge–Ampère equations in big cohomology classes. Acta Math. 205, 199–262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheeger, J., Yau, S.-T.: A lower bound for the heat kernel. Commun. Pure Appl. Math. 34, 465–480 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheng, S.Y., Yau, S.T.: On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation. Commun. Pure Appl. Math. 33, 507–544 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Demailly, J.P.: Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials. Lecture notes Santa Cruz (1995). Electronically published

  15. Demailly, J.P.: Complex Analytic and Differential Geometry. Grenoble (1997)

    Google Scholar 

  16. Forster, O.: Zur Theorie der Steinschen Algebren und Moduln. Math. Z. 97, 376–405 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fujiki, A., Schumacher, G.: The moduli space of extremal compact Kähler manifolds and generalized Weil–Petersson metrics. Publ. Res. Inst. Math. Sci. 26, 101–183 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grauert, H., Remmert, R.: Plurisubharmonische Funktionen in komplexen Räumen. Math. Z. 65, 175–194 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grauert, H., Reckziegel, H.: Hermitesche Metriken und normale Familien holomorpher Abbildungen. Math. Z. 89, 108–125 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  20. Houzel, Ch.: Géometrie analytique locale, II. Théorie des morphismes finis. Sémin. Cartan, 13e année, 19(61) (1969)

  21. Kebekus, S., Kovács, S.: Families of canonically polarized varieties over surfaces. Invent. Math. 172, 657–682 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kobayashi, Sh.: Hyperbolic Complex Spaces. Grundlehren der Mathematischen Wissenschaften. vol. 318. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  23. Kobayashi, R.: Kähler–Einstein metric on an open algebraic manifold. Osaka J. Math. 21, 399–418 (1984)

    MathSciNet  MATH  Google Scholar 

  24. Kollár, J.: Projectivity of complete moduli. J. Differ. Geom. 32, 235–268 (1990)

    MATH  Google Scholar 

  25. Kollár, J.: Non-quasi-projective moduli spaces. Ann. Math. 164, 1077–1096 (2006)

    Article  MATH  Google Scholar 

  26. Kollár, J., Kovács, S.: Log canonical singularities are Du Bois. J. Am. Math. Soc. 23, 791–813 (2010)

    Article  MATH  Google Scholar 

  27. Kovács, S.: Smooth families over rational and elliptic curves. J. Algebr. Geom. 5, 369–385 (1996)

    MATH  Google Scholar 

  28. Kovács, S.: On the minimal number of singular fibres in a family of surfaces of general type. J. Reine Angew. Math. 487, 171–177 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Kovács, S.: Algebraic hyperbolicity of fine moduli spaces. J. Algebr. Geom. 9, 165–174 (2000)

    MATH  Google Scholar 

  30. Migliorini, L.: A smooth family of minimal surfaces of general type over a curve of genus at most one is trivial. J. Algebr. Geom. 4, 353–361 (1995)

    MathSciNet  MATH  Google Scholar 

  31. Mourougane, Ch., Takayama, S.: Hodge metrics and the curvature of higher direct images. Ann. Sci. Éc. Norm. Supér. (4) 41, 905–924 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Liu, K., Sun, X., Yau, S.T.: Good geometry on the curve moduli. Publ. Res. Inst. Math. Sci. 44, 699–724 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schumacher, G.: Harmonic maps of the moduli space of compact Riemann surfaces. Math. Ann. 275, 455–466 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schumacher, G.: The curvature of the Petersson–Weil metric on the moduli space of Kähler–Einstein manifolds. In: Ancona, V., et al. (eds.) Complex Analysis and Geometry. The University Series in Mathematics, pp. 339–354. Plenum Press, New York (1993)

    Google Scholar 

  35. Schumacher, G.: Asymptotics of Kähler–Einstein metrics on quasi-projective manifolds and an extension theorem on holomorphic maps. Math. Ann. 311, 631–645 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Schumacher, G.: Positivity of relative canonical bundles for families of canonically polarized manifolds. arXiv:0808.3259v2

  37. Schumacher, G., Tsuji, H.: Quasi-projectivity of moduli spaces of polarized varieties. Ann. Math. 159, 597–639 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shiffman, B.: Extension of positive line bundles and meromorphic maps. Invent. Math. 15, 332–347 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  39. Siu, Y.-T.: Absolute gap-sheaves and extensions of coherent analytic sheaves. Trans. Am. Math. Soc. 141, 361–376 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  40. Siu, Y.-T.: Curvature of the Weil–Petersson metric in the moduli space of compact Kähler–Einstein manifolds of negative first Chern class. In: Stoll, H.W. (ed.) Contributions to Several Complex Variables, Proc. Conf. Complex Analysis, Notre Dame/Indiana, 1984. Aspects Math., vol. E9, pp. 261–298 (1986)

    Google Scholar 

  41. Siu, Y.-T.: Analyticity of sets associated to Lelong numbers and the extension of closed positive currents. Invent. Math. 27, 53–156 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sturm, K.Th.: Heat kernel bounds on manifolds. Math. Ann. 292, 149–162 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tromba, A.J.: On a natural affine connection on the space of almost complex structures and the curvature of the Teichmüller space with respect to its Weil–Petersson metric. Manuscr. Math. 56, 475–497 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  44. Varouchas, J.: Stabilité de la classe des varietés Kähleriennes par certains morphismes propres. Invent. Math. 77, 117–127 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  45. Viehweg, E.: Weak positivity and stability of certain Hilbert points I. Invent. Math. 96, 639–669 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  46. Viehweg, E.: Weak positivity and stability of certain Hilbert points II. Invent. Math. 101, 191–223 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. Viehweg, E.: Weak positivity and stability of certain Hilbert points III. Invent. Math. 101, 521–543 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  48. Viehweg, E.: Quasi-Projective Moduli for Polarized Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 30. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  49. Viehweg, E.: Compactifications of smooth families and of moduli spaces of polarized manifolds. Ann. Math. 172, 809–910 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Viehweg, E., Zuo, K.: On the Brody hyperbolicity of moduli spaces for canonically polarized manifolds. Duke Math. J. 118, 103–150 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. Viehweg, E., Zuo, K.: On the isotriviality of families of projective manifolds over curves. J. Algebr. Geom. 10, 781–799 (2001)

    MathSciNet  MATH  Google Scholar 

  52. Wolpert, S.: Chern forms and the Riemann tensor for the moduli space of curves. Invent. Math. 85, 119–145 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. Commun. Pure Appl. Math. 31, 339–411 (1978)

    Article  MATH  Google Scholar 

  54. Yoshikawa, K.-I.: On the singularity of Quillen metrics. Math. Ann. 337, 61–89 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yosida, K.: On the existence of the resolvent kernel for elliptic differential operator in a compact Riemann space. Nagoya Math. J. 4, 63–72 (1952)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Schumacher.

Additional information

Dedicated to the memory of Eckart Viehweg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumacher, G. Positivity of relative canonical bundles and applications. Invent. math. 190, 1–56 (2012). https://doi.org/10.1007/s00222-012-0374-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-012-0374-7

Mathematics Subject Classification (2000)

Navigation