Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Inventiones mathematicae
  3. Article

A Herbrand-Ribet theorem for function fields

  • Open access
  • Published: 30 July 2011
  • volume 188, pages 253–275 (2012)
Download PDF

You have full access to this open access article

Inventiones mathematicae Aims and scope
A Herbrand-Ribet theorem for function fields
Download PDF
  • Lenny Taelman1 
  • 839 Accesses

  • 16 Citations

  • Explore all metrics

Cite this article

Abstract

We prove a function field analogue of the Herbrand-Ribet theorem on cyclotomic number fields. The Herbrand-Ribet theorem can be interpreted as a result about cohomology with μ p -coefficients over the splitting field of μ p , and in our analogue both occurrences of μ p are replaced with the \(\mathfrak{p}\)-torsion scheme of the Carlitz module for a prime \(\mathfrak{p}\) in F q [t].

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Anderson, G.W.: Log-algebraicity of twisted A-harmonic series and special values of L-series in characteristic p. J. Number Theory 60(1), 165–209 (1996). http://www.ams.org/mathscinet-getitem?mr=1405732

    Article  MathSciNet  MATH  Google Scholar 

  2. Anglès, B.: On Gekeler’s conjecture for function fields. J. Number Theory 87(2), 242–252 (2001). http://www.ams.org/mathscinet-getitem?mr=1824146

    Article  MathSciNet  MATH  Google Scholar 

  3. Artin, M., Milne, J.S.: Duality in the flat cohomology of curves. Invent. Math. 35, 111–129 (1976). http://www.ams.org/mathscinet-getitem?mr=0419450

    Article  MathSciNet  MATH  Google Scholar 

  4. Galovich, S., Rosen, M.: The class number of cyclotomic function fields. J. Number Theory 13(3), 363–375 (1981). http://www.ams.org/mathscinet-getitem?mr=634206

    Article  MathSciNet  MATH  Google Scholar 

  5. Gekeler, E.-U.: On regularity of small primes in function fields. J. Number Theory 34(1), 114–127 (1990). http://www.ams.org/mathscinet-getitem?mr=1039771

    Article  MathSciNet  MATH  Google Scholar 

  6. Goss, D.: Analogies between global fields. In: Number Theory, Montreal, Que., 1985. CMS Conf. Proc., vol. 7, pp. 83–114. Amer. Math. Soc, Providence (1987). http://www.ams.org/mathscinet-getitem?mr=894321

    Google Scholar 

  7. Goss, D.: Basic Structures of Function Field Arithmetic, vol. 35. Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer, Berlin (1996). http://www.ams.org/mathscinet-getitem?mr=1423131

    MATH  Google Scholar 

  8. Goss, D., Sinnott, W.: Class-groups of function fields. Duke Math. J. 52(2), 507–516 (1985). http://www.ams.org/mathscinet-getitem?mr=792185

    Article  MathSciNet  MATH  Google Scholar 

  9. Herbrand, J.: Sur les classes des corps circulaires. J. Math. Pures Appl., IX. Sér. 11, 417–441 (1932)

    MATH  Google Scholar 

  10. Mazur, B.: Notes on étale cohomology of number fields. Ann. Sci. École Norm. Sup. (4) 6, 521–552 (1974). 1973. http://www.ams.org/mathscinet-getitem?mr=0344254

    MathSciNet  Google Scholar 

  11. Milne, J.S.: Arithmetic Duality Theorems. Perspectives in Mathematics, vol. 1. Academic Press, Boston (1986). http://www.ams.org/mathscinet-getitem?mr=881804

    Google Scholar 

  12. Okada, S.: Kummer’s theory for function fields. J. Number Theory 38(2), 212–215 (1991). http://www.ams.org/mathscinet-getitem?mr=1111373

    Article  MathSciNet  MATH  Google Scholar 

  13. Raynaud, M.: Schémas en groupes de type (p,…,p). Bull. Soc. Math. Fr. 102, 241–280 (1974). http://www.ams.org/mathscinet-getitem?mr=0419467

    MathSciNet  MATH  Google Scholar 

  14. Ribet, K.A.: A modular construction of unramified p-extensions of Q(μ p ). Invent. Math. 34(3), 151–162 (1976). http://www.ams.org/mathscinet-getitem?mr=0419403

    Article  MathSciNet  MATH  Google Scholar 

  15. Taelman, L.: The Carlitz shtuka. J. Number Theory 131(3), 410–418 (2011). http://www.ams.org/mathscinet-getitem?mr=2739043

    Article  MathSciNet  MATH  Google Scholar 

  16. Taelman, L.: Special L-values of Drinfeld modules. To appear in Ann. Math., 2011

  17. Tate, J., Oort, F.: Group schemes of prime order. Ann. Sci. École Norm. Sup. (4) 3, 1–21 (1970). http://www.ams.org/mathscinet-getitem?mr=0265368

    MathSciNet  MATH  Google Scholar 

  18. Washington, L.C.: Introduction to Cyclotomic Fields. Graduate Texts in Mathematics, vol. 83, 2nd edn. Springer, New York (1997). http://www.ams.org/mathscinet-getitem?mr=1421575

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Mathematisch Instituut, P.O. Box 9512, 2300, RA Leiden, The Netherlands

    Lenny Taelman

Authors
  1. Lenny Taelman
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Lenny Taelman.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Taelman, L. A Herbrand-Ribet theorem for function fields. Invent. math. 188, 253–275 (2012). https://doi.org/10.1007/s00222-011-0346-3

Download citation

  • Received: 06 May 2011

  • Accepted: 06 July 2011

  • Published: 30 July 2011

  • Issue Date: May 2012

  • DOI: https://doi.org/10.1007/s00222-011-0346-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Exact Sequence
  • Short Exact Sequence
  • Group Scheme
  • Torsion Point
  • Drinfeld Module
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature