Skip to main content
Log in

Absorbing-state phase transition for driven-dissipative stochastic dynamics on ℤ

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We study the long-time behavior of conservative interacting particle systems in ℤ: the activated random walk model for reaction-diffusion systems and the stochastic sandpile. We prove that both systems undergo an absorbing-state phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amir, G., Gurel-Gurevich, O.: On fixation of activated random walks. Electron. Commun. Probab. 15, 119–123 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Andjel, E.D.: Invariant measures for the zero range processes. Ann. Probab. 10, 525–547 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59, 381 (1987)

    Article  MathSciNet  Google Scholar 

  4. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38, 364–374 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. de Freitas, J.E., Lucena, L.S., da Silva, L.R., Hilhorst, H.J.: Critical behavior of a two-species reaction-diffusion problem. Phys. Rev. E 61, 6330–6336 (2000)

    Article  Google Scholar 

  6. Dhar, D.: The abelian sandpile and related models. Physica A 263, 4–25 (1999). arXiv:cond-mat/9808047

    Article  Google Scholar 

  7. Dhar, D.: Theoretical studies of self-organized criticality. Physica A 369, 29–70 (2006)

    Article  MathSciNet  Google Scholar 

  8. Diaconis, P., Fulton, W.: A growth model, a game, an algebra, Lagrange inversion, and characteristic classes. Rend. Semin. Mat. (Torino) 49, 95–119 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Dickman, R.: Nonequilibrium phase transitions in epidemics and sandpiles. Physica A 306, 90–97 (2002). arXiv:cond-mat/0110043

    Article  MathSciNet  MATH  Google Scholar 

  10. Dickman, R., Muñoz, M.A., Vespignani, A., Zapperi, S.: Paths to self-organized criticality. Braz. J. Phys. 30, 27 (2000)

    Article  Google Scholar 

  11. Dickman, R., Rolla, L.T., Sidoravicius, V.: Activated random walkers: facts, conjectures and challenges. J. Stat. Phys. 138, 126–142 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eriksson, K.: Chip firing games on mutating graphs. SIAM J. Discrete Math. 9, 118–128 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fey, A., Levine, L., Peres, Y.: Growth rates and explosions in sandpiles. J. Stat. Phys. 138, 143–159 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fey, A., Levine, L., Wilson, D.B.: Approach to criticality in sandpiles. Phys. Rev. E 82, 031121 (2010)

    Article  MathSciNet  Google Scholar 

  15. Fey, A., Levine, L., Wilson, D.B.: Driving sandpiles to criticality and beyond. Phys. Rev. Lett. 104, 145703 (2010)

    Article  Google Scholar 

  16. Fey-den Boer, A., Redig, F.: Organized versus self-organized criticality in the Abelian sandpile model. Markov Process. Relat. Fields 11, 425–442 (2005). arXiv:math-ph/0510060

    MathSciNet  MATH  Google Scholar 

  17. Fulco, U.L., Messias, D.N., Lyra, M.L.: Critical behavior of a one-dimensional diffusive epidemic process. Phys. Rev. E 63, 066118 (2001)

    Article  Google Scholar 

  18. Fulco, U.L., Messias, D.N., Lyra, M.L.: Monte Carlo study of the critical behavior of a diffusive epidemic process. Physica A 295, 49–52 (2001)

    Article  MATH  Google Scholar 

  19. Harris, T.E.: Additive set-valued Markov processes and graphical methods. Ann. Probab. 6, 355–378 (1978)

    Article  MATH  Google Scholar 

  20. Hinrichsen, H.: Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 49, 815–958 (2000). arXiv:cond-mat/0001070

    Article  Google Scholar 

  21. Hoffman, C.E., Sidoravicius, V.: Unpublished (2004)

  22. Janssen, H.-K.: Comment on “critical behavior of a two-species reaction-diffusion problem”. Phys. Rev. E 64, 058101 (2001)

    Article  Google Scholar 

  23. Kesten, H., Sidoravicius, V.: Branching random walk with catalysts. Electron. J. Probab. 8, 1–51 (2003)

    Article  MathSciNet  Google Scholar 

  24. Kesten, H., Sidoravicius, V.: The spread of a rumor or infection in a moving population. Ann. Probab. 33, 2402–2462 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kesten, H., Sidoravicius, V.: A phase transition in a model for the spread of an infection. Ill. J. Math. 50, 547–634 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Kesten, H., Sidoravicius, V.: A shape theorem for the spread of an infection. Ann. Math. 167, 701–766 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kree, R., Schaub, B., Schmittmann, B.: Effects of pollution on critical population dynamics. Phys. Rev. A 39, 2214–2221 (1989)

    Article  Google Scholar 

  28. Lübeck, S.: Universal scaling behavior of non-equilibrium phase transitions. Int. J. Mod. Phys. B 18, 3977–4118 (2004). arXiv:cond-mat/0501259

    Article  Google Scholar 

  29. Manna, S.S.: Two-state model of self-organized criticality. J. Phys. A, Math. Gen. 24, L363–L369 (1991)

    Article  MathSciNet  Google Scholar 

  30. Meester, R., Quant, C.: Connections between ‘self-organised’ and ‘classical’ criticality. Markov Process. Relat. Fields 11, 355–370 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Oerding, K., van Wijland, F., Leroy, J.-P., Hilhorst, H.J.: Fluctuation-induced first-order transition in a nonequilibrium steady state. J. Stat. Phys. 99, 1365–1395 (2000)

    Article  MATH  Google Scholar 

  32. Redig, F.: Mathematical aspects of the abelian sandpile model. In: Bovier, A., Dunlop, F., van Enter, A., den Hollander, F., Dalibard, J. (eds.) Mathematical Statistical Physics—Session LXXXIII. Lecture Notes of the Les Houches Summer School, pp. 657–730. Elsevier, Amsterdam (2006). http://www.math.leidenuniv.nl/redig/sandpilelectures.pdf

    Google Scholar 

  33. Rolla, L.T.: Generalized hammersley process and phase transition for activated random walk models. Ph.D. thesis, IMPA, Rio de Janeiro, Brazil (2008). arXiv:0812.2473

  34. Rolla, L.T., Sidoravicius, V.: Absorbing-state phase transition for driven-dissipative stochastic dynamics on ℤ (2011). arXiv:0908.1152v2

  35. Sadhu, T., Dhar, D.: Steady state of stochastic sandpile models. J. Stat. Phys. 134, 427–441 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shellef, E.: Nonfixation for activated random walks. ALEA Lat. Am. J. Probab. Math. Stat. 7, 137–149 (2010)

    MathSciNet  Google Scholar 

  37. van Wijland, F., Oerding, K., Hilhorst, H.J.: Wilson renormalization of a reaction-diffusion process. Physica A 251, 179–201 (1998). arXiv:cond-mat/9706197

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladas Sidoravicius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolla, L.T., Sidoravicius, V. Absorbing-state phase transition for driven-dissipative stochastic dynamics on ℤ. Invent. math. 188, 127–150 (2012). https://doi.org/10.1007/s00222-011-0344-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-011-0344-5

Mathematics Subject Classification (2000)

Navigation