Inventiones mathematicae

, Volume 185, Issue 2, pp 283–332 | Cite as

Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem

Article

Abstract

We prove the existence of a number of smooth periodic motions u of the classical Newtonian N-body problem which, up to a relabeling of the N particles, are invariant under the rotation group \(\mathcal{R}\) of one of the five Platonic polyhedra. The number N coincides with the order \(|\mathcal{R}|\) of \(\mathcal{R}\) and the particles have all the same mass. Our approach is variational and u is a minimizer of the Lagrangian action \(\mathcal{A}\) on a suitable subset \(\mathcal{K}\) of the H1T-periodic maps u:ℝ→ℝ3N. The set \({\mathcal {K}}\) is a cone and is determined by imposing on u both topological and symmetry constraints which are defined in terms of the rotation group \(\mathcal{R}\). There exist infinitely many such cones \({\mathcal {K}}\), all with the property that \({\mathcal {A}}|_{{\mathcal {K}}}\) is coercive. For a certain number of them, using level estimates and local deformations, we show that minimizers are free of collisions and therefore classical solutions of the N-body problem with a rich geometric–kinematic structure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albouy, A.: Lectures on the two-body problem. In: Cabral, H., Diacu, F. (eds.) Classical and Celestial Mechanics (The Recife Lectures). Princeton University Press, Princeton (2002) Google Scholar
  2. 2.
    Barutello, V., Ferrario, D.L., Terracini, S.: On the singularities of generalized solutions to n-body-type problems. Int. Math. Res. Not. 069, 1–78 (2008) Google Scholar
  3. 3.
    Chen, K.C.: Binary decomposition for planar N-body problems and symmetric periodic solutions. Arch. Ration. Mech. Anal. 170, 247–276 (2003) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chenciner, A.: Action minimizing solutions of the Newtonian n-body problem: from homology to symmetry. In: ICM 2002, Beijing (2002) Google Scholar
  5. 5.
    Chenciner, A.: Symmetries and “simple” solutions of the classical N-body problem. In: ICMP03 (2003) Google Scholar
  6. 6.
    Chenciner, A.: Private communication Google Scholar
  7. 7.
    Chenciner, A., Montgomery, R.: A remarkable periodic solution of the three-body problem in the case of equal masses. Ann. Math. (2) 152, 881–901 (2000) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chenciner, A., Venturelli, A.: Minima de l’intégrale d’action du Problème newtonien de 4 corps de masses égales dans ℝ3: orbites “hip–hop”. Celest. Mech. Dyn. Astron. 77, 139–152 (2000) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chenciner, A., Gerver, J., Montgomenty, R., Simó, C.: Simple choreographic motions of N-bodies: a preliminary study. In: Geometry, Mechanics, and Dynamics, pp. 287–308. Springer, New York (2002) CrossRefGoogle Scholar
  10. 10.
    Coti Zelati, V.: Periodic solutions for N-body type problems. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 7/5, 477–492 (1990) MathSciNetGoogle Scholar
  11. 11.
    Coxeter, H.S.M., Longuet-Higgins, M.S., Miller, J.C.P.: Uniform polyhedra. Philos. Trans. R. Soc. Lond. 246(916), 401–450 (1954) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Cundy, H., Rollett, A.P.: Mathematical Models. Clarendon, Oxford (1954) Google Scholar
  13. 13.
    Dacorogna, B.: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences, vol. 78. Springer, Berlin (1989) MATHGoogle Scholar
  14. 14.
    Davies, M., Truman, A., Williams, D.: Classical periodic solutions of the equal-mass 2n-body problem, n-ion problem and the n-electron atom problem. Phys. Lett. A 99(1), 15–18 (1983) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Degiovanni, M., Giannoni, F., Marino, A.: Dynamical systems with Newtonian type potentials. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 15, 467–494 (1988) MATHGoogle Scholar
  16. 16.
    Delgado, J., Vidal, C.: The tetrahedral 4-body problem. J. Dyn. Differ. Equ. 11(4), 735–780 (1999) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Ferrario, D.L.: Transitive decomposition of symmetry groups for the n-body problem. Adv. Math. 213(2), 763–784 (2007) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ferrario, D.L., Portaluri, A.: On the dihedral n-body problem. Nonlinearity 21, 1307–1321 (2008) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Ferrario, D., Terracini, S.: On the existence of collisionless equivariant minimizers for the classical n-body problem. Invent. Math. 155, 305–362 (2004) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2002) Google Scholar
  21. 21.
    Gordon, W.B.: Conservative dynamical systems involving strong forces. Trans. Am. Math. Soc. 204, 113–135 (1975) MATHCrossRefGoogle Scholar
  22. 22.
    Gordon, W.B.: A minimizing property of Keplerian orbits. Am. J. Math. 99(5), 961–971 (1977) MATHCrossRefGoogle Scholar
  23. 23.
    Grove, L.C., Benson, C.T.: Finite Reflection Groups. Springer, Berlin (1985) MATHGoogle Scholar
  24. 24.
  25. 25.
  26. 26.
  27. 27.
    Marchal, C.: How the method of minimization of action avoid singularities. Celest. Mech. Dyn. Astron. 83, 325–353 (2002) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Montgomery, R.: The n-body problem, the braid group and action minimizing periodic solutions. Nonlinearity 11, 363–376 (1998) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Moore, C.: Braids in classical dynamics. Phys. Rev. Lett. 70(24), 3675–3679 (1993) MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Moore, C., Nauenberg, M.: New periodic orbits for the n-body problem. Preprint (2008). arXiv:math/0511219v1
  31. 31.
    Palais, R.: The principle of symmetric criticality. Commun. Math. Phys. 69(1), 19–30 (1979) MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Poincaré, H.: Sur Les Solutions Périodiques et le Principe de Moindre Action. C. R. Acad. Sci. 123, 915–918 (1896) MATHGoogle Scholar
  33. 33.
    Saari, D.G.: Collisions, rings, and other newtonian N-body problems, In: CBMS, vol. 104. Am. Math. Soc., Providence (2005) Google Scholar
  34. 34.
    Simó, C.: New Families of Solutions in N-Body Problems. In: Casacuberta et al. (eds.) Proceedings of the Third European Congress of Mathematics. Progress in Mathematics, vol. 201, pp. 101–115 (2001) Google Scholar
  35. 35.
    Terracini, S.: On the variational approach to the periodic n-body problem. Celest. Mech. Dyn. Astron. 95(1–4), 3–25 (2006) MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Terracini, S., Venturelli, A.: Symmetric trajectories for the 2N-body problem with equal masses. Arch. Ration. Mech. Anal. 184, 465–493 (2007) MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Venturelli, A.: Une caracterisation variationelle des solutions de Lagrange du problème plan des trois corps. C. R. Math. 332(I), 641–644 (2001) MATHMathSciNetGoogle Scholar
  38. 38.
    Venturelli, A.: Application de la minimisation de l’action au Problème de N corps dans le plan e dans l’espace. Thesis, University Paris VII 2002 Google Scholar
  39. 39.
    Vidal, C.: The tetrahedral 4-body problem with rotation. Celest. Mech. Dyn. Astron. 71(1), 15–33 (1998/1999) CrossRefMathSciNetGoogle Scholar
  40. 40.
    Wintner, A.: The Analytical Foundations of Celestial Mechanics. Princeton University Press, Princeton (1941) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Dipartimento di Matematica Pura ed ApplicataUniversità di L’AquilaL’AquilaItaly
  2. 2.Dipartimento di MatematicaUniversità di PisaPisaItaly
  3. 3.Dipartimento di MatematicaUniversità di Roma ‘La Sapienza’RomeItaly

Personalised recommendations