Skip to main content
Log in

Geometric analysis for the metropolis algorithm on Lipschitz domains

  • Published:
Inventiones mathematicae Aims and scope

Abstract

This paper gives geometric tools: comparison, Nash and Sobolev inequalities for pieces of the relevant Markov operators, that give useful bounds on rates of convergence for the Metropolis algorithm. As an example, we treat the random placement of N hard discs in the unit square, the original application of the Metropolis algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Pure and Applied Mathematics (Amsterdam), vol. 140. Elsevier/Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  2. Diaconis, P., Lebeau, G.: Micro-local analysis for the Metropolis algorithm. Math. Z. (2008). doi:10.1007/s00209-008-0383-9

    Google Scholar 

  3. Diaconis, P., Saloff-Coste, L.: Comparison techniques for random walk on finite groups. Ann. Probab. 21(4), 2131–2156 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Diaconis, P., Saloff-Coste, L.: Nash inequalities for finite Markov chains. J. Theor. Probab. 9(2), 459–510 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Krauth, W.: Statistical Mechanics. Oxford Master Series in Physics. Oxford University Press, Oxford (2006), Algorithms and computations, Oxford Master Series in Statistical Computational, and Theoretical Physics

    MATH  Google Scholar 

  6. Lebeau, G., Michel, L.: Semiclassical analysis of a random walk on a manifold. Ann. Probab. (2008). doi:10.1214/09-AOP483. arXiv:0802.0644

    Google Scholar 

  7. Löwen, H.: Fun with hard spheres. In: Statistical Physics and Spatial Statistics, Wuppertal, 1999. Lecture Notes in Phys., vol. 554, pp. 295–331. Springer, Berlin (2000)

    Chapter  Google Scholar 

  8. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  9. Radin, C.: Random close packing of granular matter. J. Stat. Phys. 131(4), 567–573 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1978)

    MATH  Google Scholar 

  11. Saloff-Coste, L.: Lectures on finite Markov chains. In: Lectures on Probability Theory and Statistics, Saint-Flour, 1996. Lecture Notes in Math., vol. 1665, pp. 301–413. Springer, Berlin (1997)

    Chapter  Google Scholar 

  12. Uhlenbeck, G.E.: An outline of statistical mechanics. In: Cohen, E.G.D. (ed.) Fundamental Problems in Statistical Mechanics, vol. 2, pp. 1–19. North-Holland, Amsterdam (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Lebeau.

Additional information

P. Diaconis was supported in part by the National Science Foundation, DMS 0505673.

G. Lebeau and L. Michel were supported in part by ANR equa-disp Blan07-3-188618.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaconis, P., Lebeau, G. & Michel, L. Geometric analysis for the metropolis algorithm on Lipschitz domains. Invent. math. 185, 239–281 (2011). https://doi.org/10.1007/s00222-010-0303-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-010-0303-6

Keywords

Navigation