Skip to main content

Advertisement

SpringerLink
  • Inventiones mathematicae
  • Journal Aims and Scope
Orbit inequivalent actions for groups containing a copy of \(\mathbb{F}_{2}\)
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Orbit sizes and the central product group of order 16

10 January 2022

Thomas Michael Keller & Audriana L. Pohlman

Lifts of Borel actions on quotient spaces

29 December 2022

Joshua R. Frisch, Alexander S. Kechris & Forte Shinko

Orbit Equivalence Rigidity for Product Actions

02 December 2019

Daniel Drimbe

MEASURE EQUIVALENCE FOR NON-UNIMODULAR GROUPS

27 January 2021

JUHANI KOIVISTO, DAVID KYED & SVEN RAUM

A sufficient condition for fixed points of a coprime action to have a normal complement

20 June 2018

M. Yasir Kızmaz

Permutation Groups and Set-Orbits on the Power Set

07 September 2021

Yanxiong Yan & Yong Yang

Orbit sizes and the dihedral group of order eight

11 March 2020

Nathan A. Jones & Thomas Michael Keller

Rank One Orbit Closures in $$\varvec{\mathcal {H}}^{\varvec{\lowercase {hyp}}}(\varvec{\lowercase {g}}-1,\varvec{\lowercase {g}}-1)$$Hhyp(g-1,g-1)

15 November 2019

Paul Apisa

On Conjugacy of Stabilizers of Reductive Group Actions

01 March 2019

V. L. Popov

Download PDF
  • Open Access
  • Published: 07 December 2010

Orbit inequivalent actions for groups containing a copy of \(\mathbb{F}_{2}\)

  • Adrian Ioana1 

Inventiones mathematicae volume 185, pages 55–73 (2011)Cite this article

  • 563 Accesses

  • 26 Citations

  • Metrics details

Abstract

We prove that if a countable group Γ contains a copy of \(\mathbb{F}_{2}\), then it admits uncountably many non orbit equivalent actions.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Bezuglyi, S.I., Golodets, V.Ya.: Hyperfinite and II1 actions for nonamenable groups. J. Funct. Anal. 40(1), 30–44 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burger, M.: Kazhdan constants for SL\((3,\Bbb{Z})\). J. Reine Angew. Math. 413, 36–67 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Connes, A.: Classification of injective factors. Cases II1, II∞, III λ , λ≠1. Ann. Math. (2) 104(1), 73–115 (1976)

    Article  MathSciNet  Google Scholar 

  4. Connes, A.: A factor of type II1 with countable fundamental group. J. Oper. Theory 4(1), 151–153 (1980)

    MathSciNet  MATH  Google Scholar 

  5. Connes, A., Weiss, B.: Property (T) and asymptotically invariant sequences. Isr. J. Math. 37, 209–210 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Connes, A., Feldman, J., Weiss, B.: An amenable equivalence relation is generated by a single transformation. Ergod. Theory Dyn. Syst. 1, 431–450 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dooley, H., Golodets, V.Ya., Rudolph, D.J., Sinelø’shchikov, D.: Non-Bernoulli systems with completely positive entropy. Ergod. Theory Dyn. Syst. 28, 87–124 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dye, H.: On groups of measure preserving transformations I. Am. J. Math. 81, 119–159 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  9. Epstein, I.: Orbit inequivalent actions of non-amenable groups. arXiv:0707.4215 [math.GR]

  10. Férnos, T.: Relative property (T) and linear groups. Ann. Inst. Fourier (Grenoble) 56(6), 1767–1804 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Feldman, J., Moore, C.C.: Ergodic equivalence relations, cohomology, and von Neumann algebras, II. Trans. Am. Math. Soc. 234, 325–359 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Furman, A.: Orbit equivalence rigidity. Ann. Math. (2) 150(3), 1083–1108 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Furman, A.: On Popa’s cocycle superrigidity theorem. Int. Math. Res. Not. 19, rnm073 (2007), 46 pp.

    MathSciNet  Google Scholar 

  14. Gaboriau, D.: Examples of groups that are measure equivalent to the free group. Ergod. Theory Dyn. Syst. 25(6), 1809–1827 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gefter, S.L., Golodets, V.Y.: Fundamental groups for ergodic actions and actions with unit fundamental groups. Publ. Res. Inst. Math. Sci. 24(6), 821–847 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gaboriau, D., Lyons, R.: A measurable-group-theoretic solution to von Neumann’s problem. Invent. Math. 177, 533–540 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gaboriau, D., Popa, S.: An uncountable family of non orbit equivalent actions of \(\Bbb{F}_{n}\). J. Am. Math. Soc. 18, 547–559 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hjorth, G.: A converse to Dye’s theorem. Trans. Am. Math. Soc. 357, 3083–3103 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ioana, A.: A relative version of Connes’ χ(M) invariant and existence of orbit inequivalent actions. Ergod. Theory Dyn. Syst. 27(4), 1199–1213 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ioana, A.: Non-orbit equivalent actions of \(\Bbb{F}_{n}\). Ann. Sci. ENS 42, 675–696 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Kazhdan, D.: On the connection of the dual space of a group with the structure of its closed subgroups. Funct. Anal. Appl. 1, 63–65 (1967)

    Article  MATH  Google Scholar 

  22. Kechris, A.: Global Aspects of Ergodic Group Actions and Equivalence Relations. Mathematical Surveys and Monographs, vol. 160. American Mathematical Society, Providence (2010)

    Google Scholar 

  23. Kida, Y.: Orbit equivalence rigidity for ergodic actions of the mapping class group. Geom. Dedic. 131, 99–109 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lück, W.: The type of the classifying space for a family of subgroups. J. Pure Appl. Algebra 149(2), 177–203 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Margulis, G.: Finitely-additive invariant measures on Euclidian spaces. Ergod. Theory Dyn. Syst. 2, 383–396 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Monod, N., Shalom, Y.: Orbit equivalence rigidity and bounded cohomology. Ann. Math. 164, 825–878 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Murray, F., von Neumann, J.: Rings of operators, IV. Ann. Math. 44, 716–808 (1943)

    Article  Google Scholar 

  28. Ol’shanskii, A.Yu.: On the question of the existence of an invariant mean on a group. Usp. Mat. Nauk 35(4(214)), 199–200 (1980)

    MathSciNet  Google Scholar 

  29. Ornstein, D., Weiss, B.: Ergodic theory of amenable groups. I. The Rokhlin lemma. Bull. Amer. Math. Soc. (N.S.) 1, 161–164 (1980)

    Article  MathSciNet  Google Scholar 

  30. Popa, S.: On a class of type II1 factors with Betti numbers invariants. Ann. Math. 163, 809–889 (2006)

    Article  MATH  Google Scholar 

  31. Popa, S.: Some computations of 1-cohomology groups and construction of non-orbit-equivalent actions. J. Inst. Math. Jussieu 5, 309–332 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Popa, S.: Strong rigidity of II1 factors arising from malleable actions of w-rigid groups II. Invent. Math. 165, 409–451 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Popa, S.: On the superrigidity of malleable actions with spectral gap. J. Am. Math. Soc. 21(4), 981–1000 (2008)

    Article  MATH  Google Scholar 

  34. Shalom, Y.: Bounded generation and Kazhdan’s property (T). Inst. Ht. Études Sci. Publ. Math. 90, 145–168 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shalom, Y.: Measurable Group Theory. European Congress of Mathematics, pp. 391–423. Eur. Math. Soc., Zürich (2005)

    Google Scholar 

  36. Schmidt, K.: Amenability, Kazhdan’s property T, strong ergodicity and invariant means for ergodic group-actions. Ergod. Theory Dyn. Syst. 1(2), 223–236 (1981)

    Article  MATH  Google Scholar 

  37. Szwarc, R.: An analytic series of irreducible representations of the free group. Ann. Inst. Fourier 38, 87–110 (1988)

    MathSciNet  MATH  Google Scholar 

  38. Törnquist, A.: Orbit equivalence and actions of \(\Bbb{F}_{n}\). J. Symb. Log. 71(1), 265–282 (2006)

    Article  MATH  Google Scholar 

  39. Zimmer, R.: Ergodic Theory and Semisimple Groups. Birkhauser, Boston (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics, CALTECH, Pasadena, CA, 91125, USA

    Adrian Ioana

Authors
  1. Adrian Ioana
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Adrian Ioana.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Ioana, A. Orbit inequivalent actions for groups containing a copy of \(\mathbb{F}_{2}\) . Invent. math. 185, 55–73 (2011). https://doi.org/10.1007/s00222-010-0301-8

Download citation

  • Received: 04 June 2008

  • Accepted: 24 November 2010

  • Published: 07 December 2010

  • Issue Date: July 2011

  • DOI: https://doi.org/10.1007/s00222-010-0301-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Relative Property
  • Mapping Class Group
  • Countable Group
  • Equivalent Action
  • Ergodic Action
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.