Abstract
We prove that if a countable group Γ contains a copy of \(\mathbb{F}_{2}\), then it admits uncountably many non orbit equivalent actions.
References
Bezuglyi, S.I., Golodets, V.Ya.: Hyperfinite and II1 actions for nonamenable groups. J. Funct. Anal. 40(1), 30–44 (1981)
Burger, M.: Kazhdan constants for SL\((3,\Bbb{Z})\). J. Reine Angew. Math. 413, 36–67 (1991)
Connes, A.: Classification of injective factors. Cases II1, II∞, III λ , λ≠1. Ann. Math. (2) 104(1), 73–115 (1976)
Connes, A.: A factor of type II1 with countable fundamental group. J. Oper. Theory 4(1), 151–153 (1980)
Connes, A., Weiss, B.: Property (T) and asymptotically invariant sequences. Isr. J. Math. 37, 209–210 (1980)
Connes, A., Feldman, J., Weiss, B.: An amenable equivalence relation is generated by a single transformation. Ergod. Theory Dyn. Syst. 1, 431–450 (1981)
Dooley, H., Golodets, V.Ya., Rudolph, D.J., Sinelø’shchikov, D.: Non-Bernoulli systems with completely positive entropy. Ergod. Theory Dyn. Syst. 28, 87–124 (2008)
Dye, H.: On groups of measure preserving transformations I. Am. J. Math. 81, 119–159 (1959)
Epstein, I.: Orbit inequivalent actions of non-amenable groups. arXiv:0707.4215 [math.GR]
Férnos, T.: Relative property (T) and linear groups. Ann. Inst. Fourier (Grenoble) 56(6), 1767–1804 (2006)
Feldman, J., Moore, C.C.: Ergodic equivalence relations, cohomology, and von Neumann algebras, II. Trans. Am. Math. Soc. 234, 325–359 (1977)
Furman, A.: Orbit equivalence rigidity. Ann. Math. (2) 150(3), 1083–1108 (1999)
Furman, A.: On Popa’s cocycle superrigidity theorem. Int. Math. Res. Not. 19, rnm073 (2007), 46 pp.
Gaboriau, D.: Examples of groups that are measure equivalent to the free group. Ergod. Theory Dyn. Syst. 25(6), 1809–1827 (2005)
Gefter, S.L., Golodets, V.Y.: Fundamental groups for ergodic actions and actions with unit fundamental groups. Publ. Res. Inst. Math. Sci. 24(6), 821–847 (1988)
Gaboriau, D., Lyons, R.: A measurable-group-theoretic solution to von Neumann’s problem. Invent. Math. 177, 533–540 (2009)
Gaboriau, D., Popa, S.: An uncountable family of non orbit equivalent actions of \(\Bbb{F}_{n}\). J. Am. Math. Soc. 18, 547–559 (2005)
Hjorth, G.: A converse to Dye’s theorem. Trans. Am. Math. Soc. 357, 3083–3103 (2005)
Ioana, A.: A relative version of Connes’ χ(M) invariant and existence of orbit inequivalent actions. Ergod. Theory Dyn. Syst. 27(4), 1199–1213 (2007)
Ioana, A.: Non-orbit equivalent actions of \(\Bbb{F}_{n}\). Ann. Sci. ENS 42, 675–696 (2009)
Kazhdan, D.: On the connection of the dual space of a group with the structure of its closed subgroups. Funct. Anal. Appl. 1, 63–65 (1967)
Kechris, A.: Global Aspects of Ergodic Group Actions and Equivalence Relations. Mathematical Surveys and Monographs, vol. 160. American Mathematical Society, Providence (2010)
Kida, Y.: Orbit equivalence rigidity for ergodic actions of the mapping class group. Geom. Dedic. 131, 99–109 (2008)
Lück, W.: The type of the classifying space for a family of subgroups. J. Pure Appl. Algebra 149(2), 177–203 (2000)
Margulis, G.: Finitely-additive invariant measures on Euclidian spaces. Ergod. Theory Dyn. Syst. 2, 383–396 (1982)
Monod, N., Shalom, Y.: Orbit equivalence rigidity and bounded cohomology. Ann. Math. 164, 825–878 (2006)
Murray, F., von Neumann, J.: Rings of operators, IV. Ann. Math. 44, 716–808 (1943)
Ol’shanskii, A.Yu.: On the question of the existence of an invariant mean on a group. Usp. Mat. Nauk 35(4(214)), 199–200 (1980)
Ornstein, D., Weiss, B.: Ergodic theory of amenable groups. I. The Rokhlin lemma. Bull. Amer. Math. Soc. (N.S.) 1, 161–164 (1980)
Popa, S.: On a class of type II1 factors with Betti numbers invariants. Ann. Math. 163, 809–889 (2006)
Popa, S.: Some computations of 1-cohomology groups and construction of non-orbit-equivalent actions. J. Inst. Math. Jussieu 5, 309–332 (2006)
Popa, S.: Strong rigidity of II1 factors arising from malleable actions of w-rigid groups II. Invent. Math. 165, 409–451 (2006)
Popa, S.: On the superrigidity of malleable actions with spectral gap. J. Am. Math. Soc. 21(4), 981–1000 (2008)
Shalom, Y.: Bounded generation and Kazhdan’s property (T). Inst. Ht. Études Sci. Publ. Math. 90, 145–168 (1999)
Shalom, Y.: Measurable Group Theory. European Congress of Mathematics, pp. 391–423. Eur. Math. Soc., Zürich (2005)
Schmidt, K.: Amenability, Kazhdan’s property T, strong ergodicity and invariant means for ergodic group-actions. Ergod. Theory Dyn. Syst. 1(2), 223–236 (1981)
Szwarc, R.: An analytic series of irreducible representations of the free group. Ann. Inst. Fourier 38, 87–110 (1988)
Törnquist, A.: Orbit equivalence and actions of \(\Bbb{F}_{n}\). J. Symb. Log. 71(1), 265–282 (2006)
Zimmer, R.: Ergodic Theory and Semisimple Groups. Birkhauser, Boston (1984)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Ioana, A. Orbit inequivalent actions for groups containing a copy of \(\mathbb{F}_{2}\) . Invent. math. 185, 55–73 (2011). https://doi.org/10.1007/s00222-010-0301-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00222-010-0301-8
Keywords
- Relative Property
- Mapping Class Group
- Countable Group
- Equivalent Action
- Ergodic Action