Abstract
We discuss some numerical invariants of multidimensional shifts of finite type (SFTs) which are associated with the growth rates of the number of admissible finite configurations. Extending an unpublished example of Tsirelson (A strange two-dimensional symbolic system, 1992), we show that growth complexities of the form exp (n α+o(1)) are possible for non-integer α’s. In terminology of de Carvalho (Port. Math. 54(1):19–40, 1997), such subshifts have entropy dimension α. The class of possible α’s are identified in terms of arithmetical classes of real numbers of Weihrauch and Zheng (Math. Log. Q. 47(1):51–65, 2001).
This is a preview of subscription content, access via your institution.
References
Ahn, Y.-H., Dou, D., Park, K.K.: Entropy dimensions and variational principle. Trends Math. 10(2), 163–165 (2008)
Blume, F.: Possible rates of entropy convergence. Ergod. Theory Dyn. Syst. 17(1), 45–70 (1997)
de Carvalho, M.: Entropy dimension of dynamical systems. Port. Math. 54(1), 19–40 (1997)
Einsiedler, M., Lind, D., Miles, R., Ward, T.: Expansive subdynamics for algebraic \({\Bbb{Z}}\sp d\)-actions. Ergod. Theory Dyn. Syst. 21(6), 1695–1729 (2001)
Ferenczi, S., Park, K.K.: Entropy dimensions and a class of constructive examples. Discrete Contin. Dyn. Syst. 17(1), 133–141 (2007)
Hochman, M.: On the dynamics and recursive properties of multidimensional symbolic systems. Invent. Math. 176(1), 131–167 (2009)
Hochman, M., Meyerovitch, T.: A characterization of the entropies of multidimensional shifts of finite type. Ann. Math. (2) 171(3), 2010–2038 (2010)
Katok, A., Thouvenot, J.-P.: Slow entropy type invariants and smooth realization of commuting measure-preserving transformations. Ann. Inst. Henri Poincaré Probab. Stat. 33(3), 323–338 (1997)
Kim, K.H., Ormes, N.S., Roush, F.W.: The spectra of nonnegative integer matrices via formal power series. J. Am. Math. Soc. 13(4), 773–806 (2000) (electronic)
Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)
Lind, D.A.: The entropies of topological Markov shifts and a related class of algebraic integers. Ergod. Theory Dyn. Syst. 4(2), 283–300 (1984)
Meyerovitch, T.: Finite entropy for multidimensional cellular automata. Ergod. Theory Dyn. Syst. 28(1), 61–83 (2008)
Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Invent. Math. 12, 177–209 (1971)
Simpson, S.G.: Medvedev degrees of 2-dimensional subshifts of finite type (2007)
Tsirelson, B.: A strange two-dimensional symbolic system. Unpublished notes from Tel Aviv University Math Colloquim (1992)
Zheng, X., Weihrauch, K.: The arithmetical hierarchy of real numbers. Math. Log. Q. 47(1), 51–65 (2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Meyerovitch, T. Growth-type invariants for ℤd subshifts of finite type and arithmetical classes of real numbers. Invent. math. 184, 567–589 (2011). https://doi.org/10.1007/s00222-010-0296-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00222-010-0296-1