Skip to main content
Log in

Weakly nonlinear Schrödinger equation with random initial data

  • Published:
Inventiones mathematicae Aims and scope

Abstract

It is common practice to approximate a weakly nonlinear wave equation through a kinetic transport equation, thus raising the issue of controlling the validity of the kinetic limit for a suitable choice of the random initial data. While for the general case a proof of the kinetic limit remains open, we report on first progress. As wave equation we consider the nonlinear Schrödinger equation discretized on a hypercubic lattice. Since this is a Hamiltonian system, a natural choice of random initial data is distributing them according to the corresponding Gibbs measure with a chemical potential chosen so that the Gibbs field has exponential mixing. The solution ψ t (x) of the nonlinear Schrödinger equation yields then a stochastic process stationary in x∈ℤd and t∈ℝ. If λ denotes the strength of the nonlinearity, we prove that the space-time covariance of ψ t (x) has a limit as λ→0 for t=λ −2 τ, with τ fixed and |τ| sufficiently small. The limit agrees with the prediction from kinetic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdesselam, A., Procacci, A., Scoppola, B.: Clustering bounds on n-point correlations for unbounded spin systems. J. Stat. Phys. 136(3), 405–452 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. van Beijeren, H., Lanford, O.E., Lebowitz, J.L., Spohn, H.: Equilibrium time correlation functions in the low-density limit. J. Stat. Phys. 22(2), 237–257 (1980)

    Article  MATH  Google Scholar 

  3. Benedetto, D., Castella, F., Esposito, R., Pulvirenti, M.: From the N-body Schrödinger equation to the quantum Boltzmann equation: a term-by-term convergence result in the weak coupling regime. Commun. Math. Phys. 277(1), 1–44 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Buttà, P., Caglioti, E., Di Ruzza, S., Marchioro, C.: On the propagation of a perturbation in an anharmonic system. J. Stat. Phys. 127(2), 313–325 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Erdős, L., Salmhofer, M., Yau, H.T.: Quantum diffusion for the Anderson model in the scaling limit. Ann. Henri Poincaré 8(4), 621–685 (2007)

    Article  Google Scholar 

  6. Erdős, L., Salmhofer, M., Yau, H.T.: Quantum diffusion of the random Schrödinger evolution in the scaling limit II. The recollision diagrams. Commun. Math. Phys. 271(1), 1–53 (2007)

    Article  Google Scholar 

  7. Erdős, L., Salmhofer, M., Yau, H.T.: Quantum diffusion of the random Schrödinger evolution in the scaling limit I. The non-recollision diagrams. Acta Math. 200(2), 211–277 (2008)

    Article  MathSciNet  Google Scholar 

  8. Erdős, L., Yau, H.T.: Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation. Commun. Pure Appl. Math. 53(6), 667–735 (2000)

    Article  Google Scholar 

  9. Glimm, J., Jaffe, A.: Quantum Physics: A Functional Integral Point of View, 2nd edn. Springer, New York (1987)

    Google Scholar 

  10. Gurevich, V.L.: Transport in Phonon Systems. North-Holland, Amsterdam (1986)

    Google Scholar 

  11. Ho, T.G., Landau, L.J.: Fermi gas on a lattice in the van Hove limit. J. Stat. Phys. 87(3), 821–845 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Janssen, P.A.E.M.: Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 33(4), 863–884 (2003)

    Article  MathSciNet  Google Scholar 

  13. Landau, L.J., Luswili, N.J.: Asymptotic expansion of a Bessel function integral using hypergeometric functions. J. Comput. Appl. Math. 132(2), 387–397 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lanford, O.E., Lebowitz, J.L., Lieb, E.H.: Time evolution of infinite anharmonic systems. J. Stat. Phys. 16(6), 453–461 (1977)

    Article  MathSciNet  Google Scholar 

  15. Lebowitz, J.L., Presutti, E.: Statistical mechanics of systems of unbounded spins. Commun. Math. Phys. 50(3), 195–218 (1976)

    Article  MathSciNet  Google Scholar 

  16. Lukkarinen, J., Spohn, H.: Kinetic limit for wave propagation in a random medium. Arch. Ration. Mech. Anal. 183(1), 93–162 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lukkarinen, J., Spohn, H.: Not to normal order—Notes on the kinetic limit for weakly interacting quantum fluids. J. Stat. Phys. 134(5), 1133–1172 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lvov, Y.V., Nazarenko, S.: Noisy spectra, long correlations, and intermittency in wave turbulence. Phys. Rev. E 69(6), 066608 (2004)

    MathSciNet  Google Scholar 

  19. Malyshev, V.A., Minlos, R.A.: Gibbs Random Fields: Cluster Expansions. Springer, Dordrecht (1991)

    MATH  Google Scholar 

  20. Salmhofer, M.: Clustering of fermionic truncated expectation values via functional integration. J. Stat. Phys. 134(5), 941–952 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Spohn, H.: The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics. J. Stat. Phys. 124(2–4), 1041–1104 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. Springer, Berlin (1999)

    MATH  Google Scholar 

  23. Zakharov, V.E., L’Vov, V.S., Falkovich, G.: Kolmogorov Spectra of Turbulence I: Wave Turbulence. Springer, Berlin (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jani Lukkarinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukkarinen, J., Spohn, H. Weakly nonlinear Schrödinger equation with random initial data. Invent. math. 183, 79–188 (2011). https://doi.org/10.1007/s00222-010-0276-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-010-0276-5

Mathematics Subject Classification (2000)

Navigation