Inventiones mathematicae

, Volume 182, Issue 1, pp 167–211 | Cite as

A mass transportation approach to quantitative isoperimetric inequalities

Article

Abstract

A sharp quantitative version of the anisotropic isoperimetric inequality is established, corresponding to a stability estimate for the Wulff shape of a given surface tension energy. This is achieved by exploiting mass transportation theory, especially Gromov’s proof of the isoperimetric inequality and the Brenier-McCann Theorem. A sharp quantitative version of the Brunn-Minkowski inequality for convex sets is proved as a corollary.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberti, A., Ambrosio, L.: A geometrical approach to monotone functions in ℝn. Math. Z. 230(2), 259–316 (1999) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ambrosio, L., Caselles, V., Masnou, S., Morel, J.-M.: Connected components of sets of finite perimeter and applications to image processing. J. Eur. Math. Soc. (JEMS) 3(1), 39–92 (2001) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000) MATHGoogle Scholar
  4. 4.
    Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11(4), 573–598 (1976) MATHMathSciNetGoogle Scholar
  5. 5.
    Bernstein, F.: Über die isoperimetrische Eigenschaft des Kreises auf der Kugeloberfläche und in der Ebene. Math. Ann. 60, 117–136 (1905) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bianchi, G., Egnell, H.: A note on the Sobolev inequality. J. Funct. Anal. 100(1), 18–24 (1991) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bonnesen, T.: Über die isoperimetrische Defizite ebener Figuren. Math. Ann. 91, 252–268 (1924) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Brothers, J.E., Morgan, F.: The isoperimetric theorem for general integrands. Mich. Math. J. 41(3), 419–431 (1994) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Caffarelli, L.A.: The regularity of mappings with a convex potential. J. Am. Math. Soc. 5(1), 99–104 (1992) MATHMathSciNetGoogle Scholar
  11. 11.
    Cianchi, A., Fusco, N., Maggi, F., Pratelli, A.: The sharp Sobolev inequality in quantitative form. J. Eur. Math. Soc. (JEMS) 11(5), 1105–1139 (2009) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Cordero-Erausquin, D., Nazaret, B., Villani, C.: A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182(2), 307–332 (2004) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dacorogna, B., Pfister, C.-E.: Wulff theorem and best constant in Sobolev inequality. J. Math. Pures Appl. (9) 71(2), 97–118 (1992) MathSciNetGoogle Scholar
  14. 14.
    Dinghas, A.: Über einen geometrischen Satz von Wulff für die Gleichgewichtsform von Kristallen, Z. Kristallogr., Mineral. Petrogr. 105, (1944) (in German) Google Scholar
  15. 15.
    Diskant, V.I.: Stability of the solution of a Minkowski equation. Sib. Mat. Z. 14, 669–673,696 (1973) (in Russian) MATHMathSciNetGoogle Scholar
  16. 16.
    De Giorgi, E.: Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita. Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I (8) 5, 33–44 (1958) (in Italian) MathSciNetGoogle Scholar
  17. 17.
    Dolzmann, G., Müller, S.: Microstructures with finite surface energy: the two-well problem. Arch. Ration. Mech. Anal. 132(2), 101–141 (1995) MATHCrossRefGoogle Scholar
  18. 18.
    Esposito, L., Fusco, N., Trombetti, C.: A quantitative version of the isoperimetric inequality: the anisotropic case. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4(4), 619–651 (2005) MATHMathSciNetGoogle Scholar
  19. 19.
    Figalli, A., Maggi, F., Pratelli, A.: A refined Brunn-Minkowski inequality for convex sets. Ann. Inst. Henri Poincaré Anal. Non Linèaire 26(6), 2511–2519 (2009) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, vol. 153. Springer, New York (1969), xiv+676 pp. MATHGoogle Scholar
  21. 21.
    Fonseca, I., Müller, S.: A uniqueness proof for the Wulff theorem. Proc. R. Soc. Edinb. Sect. A 119(1–2), 125–136 (1991) MATHGoogle Scholar
  22. 22.
    Fuglede, B.: Stability in the isoperimetric problem for convex or nearly spherical domains in ℝn. Trans. Am. Math. Soc. 314, 619–638 (1989) MATHMathSciNetGoogle Scholar
  23. 23.
    Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative isoperimetric inequality. Ann. Math. 168, 941–980 (2008) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative Sobolev inequality for functions of bounded variation. J. Funct. Anal. 244(1), 315–341 (2007) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Gardner, R.J.: The Brunn-Minkowski inequality. Bull. Am. Math. Soc. (NS) 39(3), 355–405 (2002) MATHCrossRefGoogle Scholar
  26. 26.
    Groemer, H.: On the Brunn-Minkowski theorem. Geom. Dedic. 27(3), 357–371 (1988) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Groemer, H.: On an inequality of Minkowski for mixed volumes. Geom. Dedic. 33(1), 117–122 (1990) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Gurtin, M.E.: On a theory of phase transitions with interfacial energy. Arch. Ration. Mech. Anal. 87(3), 187–212 (1985) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Hadwiger, H., Ohmann, D.: Brunn-Minkowskischer Satz und Isoperimetrie. Math. Z. 66, 1–8 (1956) MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Hall, R.R.: A quantitative isoperimetric inequality in n-dimensional space. J. Reine Angew. Math. 428, 161–176 (1992) MATHMathSciNetGoogle Scholar
  31. 31.
    Hall, R.R., Hayman, W.K., Weitsman, A.W.: On asymmetry and capacity. J. Anal. Math. 56, 87–123 (1991) MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Herring, C.: Some theorems on the free energies of crystal surfaces. Phys. Rev. 82, 87–93 (1951) MATHCrossRefGoogle Scholar
  33. 33.
    John, F.: Extremum Problems with Inequalities as Subsidiary Conditions. Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, pp. 187–204. Interscience, New York (1948) Google Scholar
  34. 34.
    Knothe, H.: Contributions to the theory of convex bodies. Mich. Math. J. 4, 39–52 (1957) MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Maggi, F.: Some methods for studying stability in isoperimetric type problems. Bull. Am. Math. Soc. 45, 367–408 (2008) MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Maggi, F., Villani, C.: Balls have the worst best Sobolev inequalities. J. Geom. Anal. 15(1), 83–121 (2005) MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Maz’ja, V.G.: Sobolev Spaces. Springer Series in Soviet Mathematics. Springer, Berlin (1985), xix+486 pp. Translated from the Russian by T.O. Shaposhnikova MATHGoogle Scholar
  38. 38.
    McCann, R.J.: Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80(2), 309–323 (1995) MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128(1), 153–179 (1997) MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Milman, V.D., Schechtman, G.: Asymptotic Theory of Finite-dimensional Normed Spaces. With an appendix by M. Gromov. Lecture Notes in Mathematics, vol. 1200. Springer, Berlin (1986), viii+156 pp. MATHGoogle Scholar
  41. 41.
    Ruzsa, I.Z.: The Brunn-Minkowski inequality and nonconvex sets. Geom. Dedic. 67(3), 337–348 (1997) (English summary) MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Schneider, R.: On the general Brunn-Minkowski theorem. Beitr. Algebra Geom. 34(1), 1–8 (1993) MATHGoogle Scholar
  43. 43.
    Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976) MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Taylor, J.E.: Crystalline variational problems. Bull. Am. Math. Soc. 84(4), 568–588 (1978) MATHCrossRefGoogle Scholar
  45. 45.
    Van Schaftingen, J.: Anisotropic symmetrization. Ann. Inst. Henri Poincaré Anal. Non Lineaire 23(4), 539–565 (2006) MATHCrossRefGoogle Scholar
  46. 46.
    Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003), xvi+370 pp. MATHGoogle Scholar
  47. 47.
    Wulff, G.: Zur Frage der Geschwindigkeit des Wachsturms und der Auflösung der Kristallflächen. Z. Kristallogr. 34, 449–530 (1901) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsThe University of Texas at AustinAustinUSA
  2. 2.Dipartimento di Matematica “U. Dini”Università di FirenzeFirenzeItaly
  3. 3.Dipartimento di MatematicaUniversità di PaviaPaviaItaly

Personalised recommendations