Advertisement

Inventiones mathematicae

, Volume 182, Issue 1, pp 167–211 | Cite as

A mass transportation approach to quantitative isoperimetric inequalities

  • A. Figalli
  • F. Maggi
  • A. Pratelli
Article

Abstract

A sharp quantitative version of the anisotropic isoperimetric inequality is established, corresponding to a stability estimate for the Wulff shape of a given surface tension energy. This is achieved by exploiting mass transportation theory, especially Gromov’s proof of the isoperimetric inequality and the Brenier-McCann Theorem. A sharp quantitative version of the Brunn-Minkowski inequality for convex sets is proved as a corollary.

Keywords

Sobolev Inequality Isoperimetric Inequality Asymmetry Index Trace Inequality Coarea Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberti, A., Ambrosio, L.: A geometrical approach to monotone functions in ℝn. Math. Z. 230(2), 259–316 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ambrosio, L., Caselles, V., Masnou, S., Morel, J.-M.: Connected components of sets of finite perimeter and applications to image processing. J. Eur. Math. Soc. (JEMS) 3(1), 39–92 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000) zbMATHGoogle Scholar
  4. 4.
    Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11(4), 573–598 (1976) zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bernstein, F.: Über die isoperimetrische Eigenschaft des Kreises auf der Kugeloberfläche und in der Ebene. Math. Ann. 60, 117–136 (1905) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bianchi, G., Egnell, H.: A note on the Sobolev inequality. J. Funct. Anal. 100(1), 18–24 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bonnesen, T.: Über die isoperimetrische Defizite ebener Figuren. Math. Ann. 91, 252–268 (1924) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Brothers, J.E., Morgan, F.: The isoperimetric theorem for general integrands. Mich. Math. J. 41(3), 419–431 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Caffarelli, L.A.: The regularity of mappings with a convex potential. J. Am. Math. Soc. 5(1), 99–104 (1992) zbMATHMathSciNetGoogle Scholar
  11. 11.
    Cianchi, A., Fusco, N., Maggi, F., Pratelli, A.: The sharp Sobolev inequality in quantitative form. J. Eur. Math. Soc. (JEMS) 11(5), 1105–1139 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Cordero-Erausquin, D., Nazaret, B., Villani, C.: A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182(2), 307–332 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dacorogna, B., Pfister, C.-E.: Wulff theorem and best constant in Sobolev inequality. J. Math. Pures Appl. (9) 71(2), 97–118 (1992) MathSciNetGoogle Scholar
  14. 14.
    Dinghas, A.: Über einen geometrischen Satz von Wulff für die Gleichgewichtsform von Kristallen, Z. Kristallogr., Mineral. Petrogr. 105, (1944) (in German) Google Scholar
  15. 15.
    Diskant, V.I.: Stability of the solution of a Minkowski equation. Sib. Mat. Z. 14, 669–673,696 (1973) (in Russian) zbMATHMathSciNetGoogle Scholar
  16. 16.
    De Giorgi, E.: Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita. Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I (8) 5, 33–44 (1958) (in Italian) MathSciNetGoogle Scholar
  17. 17.
    Dolzmann, G., Müller, S.: Microstructures with finite surface energy: the two-well problem. Arch. Ration. Mech. Anal. 132(2), 101–141 (1995) zbMATHCrossRefGoogle Scholar
  18. 18.
    Esposito, L., Fusco, N., Trombetti, C.: A quantitative version of the isoperimetric inequality: the anisotropic case. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4(4), 619–651 (2005) zbMATHMathSciNetGoogle Scholar
  19. 19.
    Figalli, A., Maggi, F., Pratelli, A.: A refined Brunn-Minkowski inequality for convex sets. Ann. Inst. Henri Poincaré Anal. Non Linèaire 26(6), 2511–2519 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, vol. 153. Springer, New York (1969), xiv+676 pp. zbMATHGoogle Scholar
  21. 21.
    Fonseca, I., Müller, S.: A uniqueness proof for the Wulff theorem. Proc. R. Soc. Edinb. Sect. A 119(1–2), 125–136 (1991) zbMATHGoogle Scholar
  22. 22.
    Fuglede, B.: Stability in the isoperimetric problem for convex or nearly spherical domains in ℝn. Trans. Am. Math. Soc. 314, 619–638 (1989) zbMATHMathSciNetGoogle Scholar
  23. 23.
    Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative isoperimetric inequality. Ann. Math. 168, 941–980 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative Sobolev inequality for functions of bounded variation. J. Funct. Anal. 244(1), 315–341 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Gardner, R.J.: The Brunn-Minkowski inequality. Bull. Am. Math. Soc. (NS) 39(3), 355–405 (2002) zbMATHCrossRefGoogle Scholar
  26. 26.
    Groemer, H.: On the Brunn-Minkowski theorem. Geom. Dedic. 27(3), 357–371 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Groemer, H.: On an inequality of Minkowski for mixed volumes. Geom. Dedic. 33(1), 117–122 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Gurtin, M.E.: On a theory of phase transitions with interfacial energy. Arch. Ration. Mech. Anal. 87(3), 187–212 (1985) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Hadwiger, H., Ohmann, D.: Brunn-Minkowskischer Satz und Isoperimetrie. Math. Z. 66, 1–8 (1956) zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Hall, R.R.: A quantitative isoperimetric inequality in n-dimensional space. J. Reine Angew. Math. 428, 161–176 (1992) zbMATHMathSciNetGoogle Scholar
  31. 31.
    Hall, R.R., Hayman, W.K., Weitsman, A.W.: On asymmetry and capacity. J. Anal. Math. 56, 87–123 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Herring, C.: Some theorems on the free energies of crystal surfaces. Phys. Rev. 82, 87–93 (1951) zbMATHCrossRefGoogle Scholar
  33. 33.
    John, F.: Extremum Problems with Inequalities as Subsidiary Conditions. Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, pp. 187–204. Interscience, New York (1948) Google Scholar
  34. 34.
    Knothe, H.: Contributions to the theory of convex bodies. Mich. Math. J. 4, 39–52 (1957) zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Maggi, F.: Some methods for studying stability in isoperimetric type problems. Bull. Am. Math. Soc. 45, 367–408 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Maggi, F., Villani, C.: Balls have the worst best Sobolev inequalities. J. Geom. Anal. 15(1), 83–121 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Maz’ja, V.G.: Sobolev Spaces. Springer Series in Soviet Mathematics. Springer, Berlin (1985), xix+486 pp. Translated from the Russian by T.O. Shaposhnikova zbMATHGoogle Scholar
  38. 38.
    McCann, R.J.: Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80(2), 309–323 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128(1), 153–179 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Milman, V.D., Schechtman, G.: Asymptotic Theory of Finite-dimensional Normed Spaces. With an appendix by M. Gromov. Lecture Notes in Mathematics, vol. 1200. Springer, Berlin (1986), viii+156 pp. zbMATHGoogle Scholar
  41. 41.
    Ruzsa, I.Z.: The Brunn-Minkowski inequality and nonconvex sets. Geom. Dedic. 67(3), 337–348 (1997) (English summary) zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Schneider, R.: On the general Brunn-Minkowski theorem. Beitr. Algebra Geom. 34(1), 1–8 (1993) zbMATHGoogle Scholar
  43. 43.
    Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976) zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Taylor, J.E.: Crystalline variational problems. Bull. Am. Math. Soc. 84(4), 568–588 (1978) zbMATHCrossRefGoogle Scholar
  45. 45.
    Van Schaftingen, J.: Anisotropic symmetrization. Ann. Inst. Henri Poincaré Anal. Non Lineaire 23(4), 539–565 (2006) zbMATHCrossRefGoogle Scholar
  46. 46.
    Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003), xvi+370 pp. zbMATHGoogle Scholar
  47. 47.
    Wulff, G.: Zur Frage der Geschwindigkeit des Wachsturms und der Auflösung der Kristallflächen. Z. Kristallogr. 34, 449–530 (1901) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsThe University of Texas at AustinAustinUSA
  2. 2.Dipartimento di Matematica “U. Dini”Università di FirenzeFirenzeItaly
  3. 3.Dipartimento di MatematicaUniversità di PaviaPaviaItaly

Personalised recommendations