Maximal Lyapunov exponents for random matrix products

Abstract

In this article we study the Lyapunov exponent for random matrix products of positive matrices and express them in terms of associated complex functions. This leads to new explicit formulae for the Lyapunov exponents and to an efficient method for their computation.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Bougerol, P., Lacroix, J.: Products of Random Matrices with Applications to Schrödinger Operators. Progress in Probability and Statistics, vol. 8. Birkhäuser, Boston (1985)

    Google Scholar 

  2. 2.

    Cohen, J., Kesten, H., Newman, C.: Random Matrices and Their Applications, vol. 50. American Mathematical Society, Providence (1986)

    Google Scholar 

  3. 3.

    Fried, D.: The zeta functions of Ruelle and Selberg. I. Ann. Sci. Ec. Norm. Super. 19, 491–517 (1986)

    MATH  MathSciNet  Google Scholar 

  4. 4.

    Furstenberg, H.: Stationary Processes and Prediction Theory. Annals of Mathematics Studies, vol. 44. Princeton University Press, Princeton (1960)

    Google Scholar 

  5. 5.

    Furstenberg, H.: Non-commuting random products. Trans. Am. Math. Soc. 108, 377–428 (1963)

    MATH  Article  MathSciNet  Google Scholar 

  6. 6.

    Furstenberg, H., Kesten, H.: Products of random matrices. Ann. Math. Statist. 31, 457–469 (1960)

    MATH  Article  MathSciNet  Google Scholar 

  7. 7.

    Gharavi, R., Anantharam, V.: An upper bound for the largest Lyapunov exponent of a Markovian product of non-negative matrices. Theor. Comp. Sci. 332, 543–557 (2005)

    MATH  Article  MathSciNet  Google Scholar 

  8. 8.

    Grothendieck, A.: Produits tensoriels topologiques et espaces nuclaires. Memoirs of the American Mathematical Society, vol. 16. American Mathematical Society, Providence (1955)

    Google Scholar 

  9. 9.

    Grothendieck, A.: La theorie de Fredholm. Bull. Soc. Math. Fr. 84, 319–384 (1956)

    MATH  MathSciNet  Google Scholar 

  10. 10.

    Hennion, H.: Dérivabilité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes à coefficients positifs. Ann. Inst. Henri Poincaré Probab. Statist. 27, 27–59 (1991)

    MATH  MathSciNet  Google Scholar 

  11. 11.

    Jenkinson, O., Pollicott, M.: Calculating Haudorff dimension of Julia sets and Kleinian limit sets. Am. J. Math. 124, 495–545 (2002)

    MATH  Article  MathSciNet  Google Scholar 

  12. 12.

    Key, E.: Computable examples of maximal Lyapunov exponents. Probab. Theory Relat. Fields 75, 97–107 (1987)

    MATH  Article  MathSciNet  Google Scholar 

  13. 13.

    Kingman, J.: Subadditive ergodic theory. Ann. Probab. 1, 883–909 (1973)

    MATH  Article  MathSciNet  Google Scholar 

  14. 14.

    Mainieri, R.: Cycle expansion for the Lyapunov exponent of a product of random matrices. Chaos 2, 91–97 (1992)

    MATH  Article  MathSciNet  Google Scholar 

  15. 15.

    Marklof, J., Tourigny, Y., Wolowski, L.: Explicit invariant measures for products of random matrices. Trans. Am. Math. Soc. 360(7), 3391–3427 (2008)

    MATH  Article  MathSciNet  Google Scholar 

  16. 16.

    Nielsen, J.: Lyapunov exponents for products of random matrices, http://citeseer.ist.psu.edu/438423.html (1997)

  17. 17.

    Parry, W., Pollicott, M.: Zeta functions and closed orbit structure of hyperbolic systems. Asterisque 187–188, 1–268 (1990)

    MathSciNet  Google Scholar 

  18. 18.

    Peres, Y.: Domains of analytic continuation for the top Lyapunov exponent. Ann. Inst. Henri Poincaré Probab. Statist. 28, 131–148 (1992)

    MATH  MathSciNet  Google Scholar 

  19. 19.

    Ruelle, D.: Zeta functions for expanding maps. Invent. Math. 34, 231–242 (1976)

    MATH  Article  MathSciNet  Google Scholar 

  20. 20.

    Ruelle, D.: Analyticity properties of the characteristic exponents of random matrix products. Adv. Math. 32, 68–80 (1979)

    MATH  Article  MathSciNet  Google Scholar 

  21. 21.

    Veech, W.: Interval exchange transformations. J. Anal. Math. 33, 222–272 (1978)

    MATH  Article  MathSciNet  Google Scholar 

  22. 22.

    Wojtkowski, A.: On uniform contraction generated by positive matrices. In: Random Matrices and Their Applications, Brunswick, Maine, 1984. Contemp. Math., vol. 50, pp. 109–118. American Mathematical Society, Providence (1986)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark Pollicott.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pollicott, M. Maximal Lyapunov exponents for random matrix products. Invent. math. 181, 209–226 (2010). https://doi.org/10.1007/s00222-010-0246-y

Download citation

Keywords

  • Lyapunov Exponent
  • Transfer Operator
  • Projective Action
  • Maximal Lyapunov Exponent
  • Positive Matrice