Algebraic A-hypergeometric functions

Abstract

We formulate and prove a combinatorial criterion to decide if an A-hypergeometric system of differential equations has a full set of algebraic solutions or not. This criterion generalises the so-called interlacing criterion in the case of hypergeometric functions of one variable.

References

  1. 1.

    Adolphson, A.: Hypergeometric functions and rings generated by monomials. Duke Math. J. 73, 269–290 (1994)

    MATH  Article  MathSciNet  Google Scholar 

  2. 2.

    Beazley Cohen, P., Wolfart, J.: Algebraic Appell-Lauricella functions. Analysis 12, 359–376 (1992)

    MATH  MathSciNet  Google Scholar 

  3. 3.

    Beukers, F., Heckman, G.: Monodromy for the hypergeometric function n F n−1. Invent. Math. 95, 325–354 (1989)

    MATH  Article  MathSciNet  Google Scholar 

  4. 4.

    Dwork, B.: Generalized Hypergeometric Functions. Oxford Mathematical Monographs. Oxford University Press, London (1990)

    MATH  Google Scholar 

  5. 5.

    Dwork, B., Loeser, F.: Hypergeometric series. Jpn. J. Math. (N.S.) 19, 81–129 (1993)

    MATH  MathSciNet  Google Scholar 

  6. 6.

    Gelfand, I.M., Graev, M.I., Zelevinsky, A.V.: Holonomic systems of equations and series of hypergeometric type. Dokl. Akad. Nauk SSSR 295, 14–19 (1987) (in Russian)

    Google Scholar 

  7. 7.

    Gelfand, I.M., Zelevinsky, A.V., Kapranov, M.M.: Equations of hypergeometric type and Newton polytopes. Dokl. Akad. Nauk SSSR 300, 529–534 (1988) (in Russian)

    MathSciNet  Google Scholar 

  8. 8.

    Gelfand, I.M., Zelevinsky, A.V., Kapranov, M.M.: Hypergeometric functions and toric varieties. Funkt. Anal. Prilozhen. 23, 12–26 (1989) (in Russian)

    Article  MathSciNet  Google Scholar 

  9. 9.

    Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Generalized Euler integrals and A-hypergeometric functions. Adv. Math. 84, 255–271 (1990)

    MATH  Article  MathSciNet  Google Scholar 

  10. 10.

    Kato, M.: Appell’s F 4 with finite irreducible monodromy group. Kyushu J. Math. 51, 125–147 (1997)

    MATH  Article  MathSciNet  Google Scholar 

  11. 11.

    Kato, M.: Appell’s hypergeometric systems F 2 with finite irreducible monodromy groups. Kyushu J. Math. 54, 279–305 (2000)

    MATH  Article  MathSciNet  Google Scholar 

  12. 12.

    Katz, N.M.: Algebraic solutions of differential equations (p-curvature and the Hodge filtration). Invent. Math. 18, 1–118 (1972)

    MATH  Article  MathSciNet  Google Scholar 

  13. 13.

    Katz, N.M.: A conjecture in the arithmetic theory of differential equations. Bull. SMF 110, 203–239 (1982). Corrections on pp. 347–348

    MATH  Google Scholar 

  14. 14.

    Kita, M.: On hypergeometric functions in several variables. I. New integral representations of Euler type. Jpn. J. Math. (N.S.) 18, 25–74 (1992)

    MATH  MathSciNet  Google Scholar 

  15. 15.

    Matusevich, L.F., Miller, E., Walther, U.: Homological methods for hypergeometric families. J. Am. Math. Soc. 18, 919–941 (2005)

    MATH  Article  MathSciNet  Google Scholar 

  16. 16.

    Sasaki, T.: On the finiteness of the monodromy group of the system of hypergeometric differential equations (F D ). J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24, 565–573 (1977)

    MATH  MathSciNet  Google Scholar 

  17. 17.

    Schwarz, H.A.: Über diejenigen Fälle, in welchen die Gaussische hypergeometrische reihe eine algebraische Funktion ihres vierten Elements darstellt. J. Reine Angew. Math. 75, 292–335 (1873)

    Google Scholar 

  18. 18.

    Yoshida, M.: Hypergeometric Functions, My Love. Aspects of Mathematics, vol. 32. Vieweg, Wiesbaden (1997)

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Frits Beukers.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Beukers, F. Algebraic A-hypergeometric functions. Invent. math. 180, 589–610 (2010). https://doi.org/10.1007/s00222-010-0238-y

Download citation

Keywords

  • Hypergeometric Function
  • Polynomial Solution
  • Algebraic Solution
  • Hypergeometric Equation
  • Fuchsian System