Skip to main content
Log in

Topological regluing of rational functions

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Regluing is a surgery that helps to build topological models for rational functions. It also has a holomorphic interpretation, with the flavor of infinite dimensional Thurston–Teichmüller theory. We will discuss a topological theory of regluing, and just trace a direction, in which a holomorphic theory can develop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aspenberg, M., Yampolsky, M.: Mating non-renormalizable quadratic polynomials. arXiv:math.DS/0610343

  2. Bing, R.H.: The Kline sphere characterization problem. Bull. Am. Math. Soc. 52, 644–653 (1946)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kuratowski, K.: Topology. San Diego, Academic/PWN Press (1966). Revised edition

    Google Scholar 

  4. Lei, T., Shishikura, M.: An alternative proof of Mañe’s theorem on non-expanding Julia sets. In: The Mandelbrot Set, Theme and Variations. LMS Lecture Note Series, vol. 274, pp. 265–279. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  5. Luo, J.: Combinatorics and Holomorphic Dynamics: Captures, Matings and Newton’s Method. PhD Thesis, Cornell University (1995)

  6. Mañe, R.: On a Theorem of Fatou. Bol. Soc. Bras. Mat. 24(1), 1–11 (1993)

    Article  MATH  Google Scholar 

  7. Mañe, R., Sud, P., Sullivan, D.: On the dynamics of rational maps. Ann. Sci. École Norm. Sup. (4) 16(2), 193–217 (1983)

    MATH  Google Scholar 

  8. Milnor, J.: Geometry and dynamics of quadratic rational maps. Exp. Math. 2, 37–83 (1993)

    MATH  MathSciNet  Google Scholar 

  9. Milnor, J.: Dynamics in One Complex Variable, 3rd edn. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  10. Moore, R.L.: On the foundations of plane analysis situs. Trans. AMS 17, 131–164 (1916)

    Article  Google Scholar 

  11. Moore, R.L.: Concerning upper-semicontinuous collections of continua. Trans. AMS 27(4), 416–428 (1925)

    Article  MATH  Google Scholar 

  12. Rees, M.: Components of degree two hyperbolic rational maps. Invent. Math. 100, 357–382 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rees, M.: A partial description of the parameter space of rational maps of degree two: Part 1. Acta Math. 168, 11–87 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rees, M.: Views of parameter space, topographer and resident. Astérisque 288 (2003)

  15. Rees, M.: A fundamental domain for V 3. Preprint

  16. Stimpson, J.: Degree two rational maps with a periodic critical point. PhD Thesis, University of Liverpool, Juli (1993)

  17. Timorin, V.: External boundary of M 2. In: Fields Institute Communications, Volume 53: Holomorphic Dynamics and Renormalization A Volume in Honour of John Milnor’s 75th Birthday

  18. Timorin, V.: On partial semi-conjugacies of quadratic polynomials. Preprint

  19. Timorin, V.: Moore’s theorem. Preprint

  20. van Kampen, E.R.: On some characterizations of 2-dimensional manifolds. Duke Math. J. 1, 74–93 (1935)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zippin, L.: A study of continuous curves and their relation to the Janiszewski–Mullikin theorem. Trans. Am. Math. Soc. 31, 744–770 (1929)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Timorin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timorin, V. Topological regluing of rational functions. Invent. math. 179, 461–506 (2010). https://doi.org/10.1007/s00222-009-0220-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-009-0220-8

Keywords

Navigation