Skip to main content
Log in

Representation of certain homogeneous Hilbertian operator spaces and applications

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Following Grothendieck’s characterization of Hilbert spaces we consider operator spaces F such that both F and F * completely embed into the dual of a C*-algebra. Due to Haagerup/Musat’s improved version of Pisier/Shlyakhtenko’s Grothendieck inequality for operator spaces, these spaces are quotients of subspaces of the direct sum C R of the column and row spaces (the corresponding class being denoted by QS(C R)). We first prove a representation theorem for homogeneous FQS(C R) starting from the fundamental sequences

$$\Phi _{c}(n)=\Bigg\|\sum_{k=1}^ne_{k1}\otimes e_k\Bigg\|_{C\otimes _{\min}F}^2\quad\mbox{and}\quad \Phi _{r}(n)=\Bigg\|\sum_{k=1}^ne_{1k}\otimes e_k\Bigg\|_{R\otimes _{\min}F}^2$$

given by an orthonormal basis (e k ) of F. Under a mild regularity assumption on these sequences we show that they completely determine the operator space structure of F and find a canonical representation of this important class of homogeneous Hilbertian operator spaces in terms of weighted row and column spaces. This canonical representation allows us to get an explicit formula for the exactness constant of an n-dimensional subspace F n of F:

$$\mathit{ex}(F_n)\sim\biggl[\frac{n}{ \Phi _{c}(n)}\Phi _{r}\bigg(\frac{ \Phi _{c}(n)}{\Phi _{r}(n)}\bigg)+\frac{n}{ \Phi _{r}(n)}\Phi _{c}\bigg(\frac{ \Phi _{r}(n)}{\Phi _{c}(n)}\bigg)\biggr]^{1/2}.$$

In the same way, the projection (=injectivity) constant of F n is explicitly expressed in terms of Φ c and Φ r too. Orlicz space techniques play a crucial role in our arguments. They also permit us to determine the completely 1-summing maps in Effros and Ruan’s sense between two homogeneous spaces E and F in QS(C R). The resulting space Π o1 (E, F) isomorphically coincides with a Schatten-Orlicz class S φ . Moreover, the underlying Orlicz function φ is uniquely determined by the fundamental sequences of E and F. In particular, applying these results to the column subspace C p of the Schatten p-class, we find the projection and exactness constants of C n p , and determine the completely 1-summing maps from C p to C q for any 1≤p, q≤∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourgain, J.: Some remarks on Banach spaces in which martingale difference sequences are unconditional. Ark. Mat. 21, 163–168 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Burkholder, D.L.: A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional. Ann. Probab. 9, 997–1011 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burkholder, D.L.: A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions. In: Conference on Harmonic Analysis in Honor of Antoni Zygmund, Wadsworth Math. Ser., vols. I, II, Chicago, Ill., 1981, pp. 270–286. Wadsworth, Belmont (1983)

    Google Scholar 

  4. Effros, Ed., Ruan, Z.-J.: The Grothendieck-Pietsch and Dvoretzky-Rogers theorems for operator spaces. J. Funct. Anal. 122, 428–450 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Effros, Ed., Ruan, Z.-J.: Operator Spaces. Clarendon Press/Oxford University Press, New York (2000)

    MATH  Google Scholar 

  6. Gohberg, I.C., Krein, M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators. American Mathematical Society, Providence (1969)

    MATH  Google Scholar 

  7. Haagerup, U., Musat, M.: On the best constants in noncommutative Khintchine-type inequalities. J. Funct. Anal. 250, 588–624 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Haagerup, U., Musat, M.: The Effros-Ruan conjecture for bilinear forms on C*-algebras. Invent. Math. 174, 139–163 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Junge, M.: Factorization Theory for Spaces of Operators. Habilitationsschrift, Kiel (1996)

    Google Scholar 

  10. Junge, M.: Embedding of the operator space OH and the logarithmic ‘little Grothendieck inequality’. Invent. Math. 161, 225–286 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Junge, M.: Operator spaces and Araki-Woods factors: a quantum probabilistic approach. IMRP Int. Math. Res. Pap., pp. Art. ID 76978, 87 (2006)

  12. Kirchberg, E.: On nonsemisplit extensions, tensor products and exactness of group C *-algebras. Invent. Math. 112, 449–489 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kirchberg, E.: Exact C *-algebras, tensor products, and the classification of purely infinite algebras. In: Proceedings of the International Congress of Mathematicians, vols. 1, 2 Zürich, 1994, pp. 943–954. Birkhäuser, Basel (1995)

    Google Scholar 

  14. Kirchberg, E.: On subalgebras of the CAR-algebra. J. Funct. Anal. 129, 35–63 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. I. Springer, Berlin (1977)

    MATH  Google Scholar 

  16. Oikhberg, T., Ricard, É: Operator spaces with few completely bounded maps. Math. Ann. 328, 229–259 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pisier, G.: Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conference Series in Mathematics, vol. 60. Conference Board of the Mathematical Sciences, Washington (1986)

    Google Scholar 

  18. Pisier, G.: Exact operator spaces. Astérisque 232, 159–186 (1995). Recent advances in operator algebras (Orléans, 1992)

    MathSciNet  Google Scholar 

  19. Pisier, G.: The operator Hilbert space OH, complex interpolation and tensor norms. Mem. Am. Math. Soc. 122(585), viii+103 (1996)

    MathSciNet  Google Scholar 

  20. Pisier, G.: Non-commutative vector valued L p -spaces and completely p-summing maps. Astérisque 1(247), vi+131 (1998)

    MathSciNet  Google Scholar 

  21. Pisier, G.: Introduction to Operator Space Theory. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  22. Pisier, G.: Completely bounded maps into certain Hilbertian operator spaces. Int. Math. Res. Not. 1(74), 3983–4018 (2004)

    Article  MathSciNet  Google Scholar 

  23. Pisier, G., Shlyakhtenko, D.: Grothendieck’s theorem for operator spaces. Invent. Math. 150, 185–217 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Simon, B.: Trace Ideals and Their Applications. Cambridge University Press, Cambridge (1979)

    MATH  Google Scholar 

  25. Xu, Q.: Embedding of C q and R q into noncommutative L p -spaces, 1≤p<q≤2. Math. Ann. 335, 109–131 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Yew, K.-L.: Completely p-summing maps on the operator Hilbert space OH. J. Funct. Anal. 255, 1362–1402 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanhua Xu.

Additional information

M. Junge’s research was partially supported by NSF DMS 05-56120 and DMS 0901457.

Q. Xu’s research was partially supported by ANR 06-BLAN-0015.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junge, M., Xu, Q. Representation of certain homogeneous Hilbertian operator spaces and applications. Invent. math. 179, 75–118 (2010). https://doi.org/10.1007/s00222-009-0210-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-009-0210-x

Mathematics Subject Classification (2000)

Navigation