Skip to main content
Log in

Curve counting via stable pairs in the derived category

  • Published:
Inventiones mathematicae Aims and scope

Abstract

For a nonsingular projective 3-fold X, we define integer invariants virtually enumerating pairs (C,D) where CX is an embedded curve and DC is a divisor. A virtual class is constructed on the associated moduli space by viewing a pair as an object in the derived category of X. The resulting invariants are conjecturally equivalent, after universal transformations, to both the Gromov-Witten and DT theories of X. For Calabi-Yau 3-folds, the latter equivalence should be viewed as a wall-crossing formula in the derived category.

Several calculations of the new invariants are carried out. In the Fano case, the local contributions of nonsingular embedded curves are found. In the local toric Calabi-Yau case, a completely new form of the topological vertex is described.

The virtual enumeration of pairs is closely related to the geometry underlying the BPS state counts of Gopakumar and Vafa. We prove that our integrality predictions for Gromov-Witten invariants agree with the BPS integrality. Conversely, the BPS geometry imposes strong conditions on the enumeration of pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexeev, V., Knutson, A.: Complete moduli spaces of branchvarieties. math.AG/0602626

  2. Aganagic, M., Klemm, A., Mariño, M., Vafa, C.: The topological vertex. Commun. Math. Phys. 254, 425–478 (2005). hep-th/0305132

    Article  MATH  Google Scholar 

  3. Aspinwall, P.S., Morrison, D.R.: Topological field theory and rational curves. Commun. Math. Phys. 151, 245–262 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bayer, A.: Polynomial Bridgeland stability conditions and the large volume limit. arXiv:0712.1083

  5. Behrend, K.: Donaldson-Thomas invariants via microlocal geometry. Ann. Math. (2009, to appear). math.AG/0507523

  6. Behrend, K., Bryan, J.: Super-rigid Donaldson-Thomas invariants. Math. Res. Lett. 14, 559–571 (2007). math.AG/0601203

    MATH  MathSciNet  Google Scholar 

  7. Behrend, K., Fantechi, B.: The intrinsic normal cone. Invent. Math. 128, 45–88 (1997). math.AG/9601010

    Article  MATH  MathSciNet  Google Scholar 

  8. Behrend, K., Fantechi, B.: Symmetric obstruction theories and Hilbert schemes of points on threefolds. Algebra Number Theory 2, 313–345 (2008). math.AG/0512556

    Article  MATH  MathSciNet  Google Scholar 

  9. Bridgeland, T.: Flops and derived categories. Invent. Math. 147, 613–632 (2002). math.AG/0009053

    Article  MATH  MathSciNet  Google Scholar 

  10. Bridgeland, T.: Stability conditions on triangulated categories. Ann. Math. 166, 317–345 (2007). math.AG/0212237

    Article  MATH  MathSciNet  Google Scholar 

  11. Bryan, J., Pandharipande, R.: The local Gromov-Witten theory of curves. J. Am. Math. Soc. 21, 101–136 (2008). math.AG/0411037

    Article  MATH  MathSciNet  Google Scholar 

  12. Candelas, P., de la Ossa, X.C., Green, P.S., Parkes, L.: A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys. B 359, 21–74 (1991)

    Article  MATH  Google Scholar 

  13. Denef, F., Moore, G.W.: Split states, entropy enigmas, holes and halos. hep-th/0702146

  14. Diaconescu, D.E.: Moduli of ADHM sheaves and local Donaldson-Thomas theory. arXiv:0801.0820

  15. Diaconescu, D.E., Moore, G.W.: Crossing the wall: Branes vs. bundles. arXiv:0706.3193 [hep-th]

  16. Donaldson, S.K., Thomas, R.P.: Gauge theory in higher dimensions. In: The Geometric Universe, Oxford, 1996, pp. 31–47. Oxford Univ. Press, Oxford (1998)

    Google Scholar 

  17. Faber, C., Pandharipande, R.: Hodge integrals and Gromov-Witten theory. Invent. Math. 139, 173–199 (2000). math.AG/9810173

    Article  MATH  MathSciNet  Google Scholar 

  18. Graber, T., Pandharipande, R.: Localization of virtual classes. Invent. Math. 135, 487–518 (1999). alg-geom/9708001

    Article  MATH  MathSciNet  Google Scholar 

  19. Gopakumar, R., Vafa, C.: M-theory and topological strings—I, hep-th/9809187

  20. Gopakumar, R., Vafa, C.: M-theory and topological strings—II. hep-th/9812127

  21. Honsen, M.: A compact moduli space parameterizing Cohen-Macaulay curves in projective space. PhD thesis, MIT (2004)

  22. Hosono, S., Saito, M.-H., Takahashi, A.: Relative Lefschetz actions and BPS state counting. IMRN 15, 783–816 (2001)

    Article  MathSciNet  Google Scholar 

  23. Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Shaves. Aspects of Mathematics, vol. E31. Vieweg, Braunschweig (1997)

    Google Scholar 

  24. Huybrechts, D., Thomas, R.P.: Deformation-obstruction theory for complexes via Atiyah and Kodaira–Spencer classes. arXiv:0805.3527

  25. Inaba, M.: Moduli of stable objects in a triangulated category. math.AG/0612078

  26. Ionel, E., Parker, T.H.: Relative Gromov-Witten invariants. Ann. Math. (2) 157, 45–96 (2003). math.SG/9907155

    Article  MATH  MathSciNet  Google Scholar 

  27. Joyce, D.: Configurations in Abelian categories, IV. Invariants and changing stability conditions. Adv. Math. 217, 125–204 (2008). math.AG/0410268

    Article  MATH  MathSciNet  Google Scholar 

  28. Katz, S.: Genus zero Gopakumar-Vafa invariants of contractible curves. J. Differential Geom. 79, 185–195 (2008). math.AG/0601193

    MATH  MathSciNet  Google Scholar 

  29. Katz, S., Klemm, A., Vafa, C.: M-theory, topological strings and spinning black holes. Adv. Theor. Math. Phys. 3, 1445–1537 (1999). hep-th/9910181

    MATH  MathSciNet  Google Scholar 

  30. Klemm, A., Pandharipande, R.: Enumerative geometry of Calabi-Yau 4-folds. Commun. Math. Phys. 281, 621–653 (2008). math.AG/0702189

    Article  MATH  MathSciNet  Google Scholar 

  31. Kollár, J.: Projectivity of complete moduli. J. Differ. Geom. 32, 235–268 (1990)

    MATH  Google Scholar 

  32. Le Potier, J.: Systèmes cohérents et structures de niveau. Astérisque 214, 143 (1993)

    MathSciNet  Google Scholar 

  33. Le Potier, J.: Faisceaux semi-stables et systèmes cohérents. In: Vector Bundles in Algebraic Geometry, Durham, 1993. London Math. Soc. Lecture Note Ser., vol. 208, pp. 179–239. Cambridge Univ. Press, Cambridge (1995)

    Google Scholar 

  34. Levine, M., Pandharipande, R.: Algebraic cobordism revisited. math.AG/0605196

  35. Li, J.: Stable morphisms to singular schemes and relative stable morphisms. J. Differ. Geom. 57, 509–578 (2001). math.AG/0009097

    MATH  Google Scholar 

  36. Li, J.: A degeneration formula of GW-invariants. J. Differ. Geom. 60, 199–293 (2002). math.AG/0110113

    MATH  Google Scholar 

  37. Li, J.: Zero dimensional Donaldson-Thomas invariants of threefolds. Geom. Topol. 10, 2117–2171 (2006). math.AG/0604490

    Article  MATH  MathSciNet  Google Scholar 

  38. Li, A.-M., Ruan, Y.: Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds I. Invent. Math. 145, 151–218 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  39. Li, J., Tian, G.: Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties. J. Am. Math. Soc. 11, 119–174 (1998). math.AG/9602007

    Article  MATH  MathSciNet  Google Scholar 

  40. Li, J., Wu, B.: Degeneration of Donaldson-Thomas invariants (in preparation)

  41. Lieblich, M.: Moduli of complexes on a proper morphism. J. Algebraic Geom. 15, 175–206 (2006). math.AG/0502198

    MATH  MathSciNet  Google Scholar 

  42. Lowen, W.: Obstruction theory for objects in Abelian and derived categories. Commun. Algebra 33, 3195–3223 (2005). math.KT/0407019

    Article  MATH  MathSciNet  Google Scholar 

  43. Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande, R.: Gromov-Witten theory and Donaldson-Thomas theory. I. Compos. Math. 142, 1263–1285 (2006). math.AG/0312059

    Article  MATH  MathSciNet  Google Scholar 

  44. Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande, R.: Gromov-Witten theory and Donaldson-Thomas theory. II. Compos. Math. 142, 1286–1304 (2006). math.AG/0406092

    Article  MATH  MathSciNet  Google Scholar 

  45. Pandharipande, R.: Hodge integrals and degenerate contributions. Commun. Math. Phys. 208, 489–506 (1999). math.AG/9811140

    Article  MATH  MathSciNet  Google Scholar 

  46. Pandharipande, R.: Three questions in Gromov-Witten theory. In: Proceedings of the International Congress of Mathematicians, Beijing, 2002, vol. II, pp. 503–512. Higher Ed. Press., Beijing (2002). math.AG/0302077

    Google Scholar 

  47. Pandharipande, R., Thomas, R.P.: The 3-fold vertex via stable pairs. Geom. Topol. 13, 1835–1876 (2009). arXiv:0709.3823

    Article  MATH  MathSciNet  Google Scholar 

  48. Pandharipande, R., Zinger, A.: Enumerative geometry of Calabi-Yau 5-folds. arXiv:0802.1640

  49. Szendrői, B.: Non-commutative Donaldson-Thomas theory and the conifold. Geom. Topol. 12, 1171–1202 (2008). arXiv:0705.3419 [math.AG]

    Article  MathSciNet  Google Scholar 

  50. Thomas, R.P.: A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations. J. Differ. Geom. 54, 367–438 (2000). math.AG/9806111

    MATH  Google Scholar 

  51. Toda, Y.: Birational Calabi-Yau 3-folds and BPS state counting. Commun. Number Theory Phys. 2, 63–112 (2008). arXiv:0707.1643 [math.AG]

    MATH  MathSciNet  Google Scholar 

  52. Toda, Y.: Limit stable objects on Calabi-Yau 3-folds. arXiv:0803.2356

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandharipande, R., Thomas, R.P. Curve counting via stable pairs in the derived category. Invent. math. 178, 407–447 (2009). https://doi.org/10.1007/s00222-009-0203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-009-0203-9

Keywords

Navigation