Skip to main content
Log in

Regulator constants and the parity conjecture

  • Published:
Inventiones mathematicae Aims and scope

Abstract

The p-parity conjecture for twists of elliptic curves relates multiplicities of Artin representations in p -Selmer groups to root numbers. In this paper we prove this conjecture for a class of such twists. For example, if E/ℚ is semistable at 2 and 3, K/ℚ is abelian and K is its maximal pro-p extension, then the p-parity conjecture holds for twists of E by all orthogonal Artin representations of \(\mathop{\mathrm{Gal}}(K^{\infty}/{\mathbb{Q}})\) . We also give analogous results when K/ℚ is non-abelian, the base field is not ℚ and E is replaced by an abelian variety. The heart of the paper is a study of relations between permutation representations of finite groups, their “regulator constants”, and compatibility between local root numbers and local Tamagawa numbers of abelian varieties in such relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birch, B.J., Stephens, N.M.: The parity of the rank of the Mordell-Weil group. Topology 5, 295–299 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bosch, S., Liu, Q.: Rational points of the group of components of a Néron model. Manuscr. Math. 98(3), 275–293 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Coates, J., Fukaya, T., Kato, K., Sujatha, R.: Root numbers, Selmer groups and non-commutative Iwasawa theory. J. Algebraic Geom. (2007, to appear)

  4. Deligne, P.: Valeur de fonctions L et périodes d’intégrales. In: Borel, A., Casselman, W. (eds.) Automorphic Forms, Representations and L-Functions, Part 2. Proc. Symp. in Pure Math., vol. 33, pp. 313–346. AMS, Providence (1979)

    Google Scholar 

  5. Dokchitser, T., Dokchitser, V.: Parity of ranks for elliptic curves with a cyclic isogeny. J. Number Theory 128, 662–679 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dokchitser, T., Dokchitser, V.: On the Birch–Swinnerton-Dyer quotients modulo squares. Ann. Math. (2006, to appear). arXiv:math.NT/0610290

  7. Dokchitser, T., Dokchitser, V.: Self-duality of Selmer groups. Math. Proc. Camb. Philos. Soc. 146, 257–267 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dokchitser, V.: Root numbers of non-abelian twists of elliptic curves, with an appendix by T. Fisher. Proc. Lond. Math. Soc. 91(3), 300–324 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73(3), 349–366 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fröhlich, A., Queyrut, J.: On the functional equation of the Artin L-function for characters of real representations. Invent. Math. 20, 125–138 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  11. Greenberg, R.: On the Birch and Swinnerton-Dyer conjecture. Invent. Math. 72(2), 241–265 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Greenberg, R.: Iwasawa theory, projective modules and modular representations. Preprint (2008)

  13. Grothendieck, A.: Modèles de Néron et monodromie. In: Séminaire de Géométrie 7, Exposé IX. LNM, vol. 288. Springer, Berlin (1973)

    Google Scholar 

  14. Guo, L.: General Selmer groups and critical values of Hecke L-functions. Math. Ann. 297(2), 221–233 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hachimori, Y., Venjakob, O.: Completely faithful Selmer groups over Kummer extensions. In: Documenta Mathematica, Extra Volume: Kazuya Kato’s Fiftieth Birthday, pp. 443–478 (2003)

  16. Kim, B.D.: The parity theorem of elliptic curves at primes with supersingular reduction. Compos. Math. 143, 47–72 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kim, B.D.: The parity conjecture over totally real fields for elliptic curves at supersingular reduction primes. Preprint

  18. Kramer, K.: Arithmetic of elliptic curves upon quadratic extension. Trans. Am. Math. Soc. 264(1), 121–135 (1981)

    Article  MATH  Google Scholar 

  19. Kramer, K., Tunnell, J.: Elliptic curves and local ε-factors. Compos. Math. 46, 307–352 (1982)

    MATH  MathSciNet  Google Scholar 

  20. Mazur, B., Rubin, K.: Finding large Selmer ranks via an arithmetic theory of local constants. Ann. Math. 166(2), 579–612 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mazur, B., Rubin, K.: Growth of Selmer rank in nonabelian extensions of number fields. Duke Math. J. 143, 437–461 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Milne, J.S.: On the arithmetic of abelian varieties. Invent. Math. 17, 177–190 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  23. Milne, J.S.: Arithmetic duality theorems. Perspect. Math. 1 (1986)

  24. Monsky, P.: Generalizing the Birch-Stephens theorem. I: Modular curves. Math. Z. 221, 415–420 (1996)

    MATH  MathSciNet  Google Scholar 

  25. Nekovář, J.: Selmer complexes. Astérisque 310 (2006)

  26. Nekovář, J.: On the parity of ranks of Selmer groups IV, with an appendix by J.-P. Wintenberger. Compos. Math. (2009, to appear)

  27. Nekovář, J.: Growth of Selmer groups of Hilbert modular forms over ring class fields. Ann. E.N.S., Sér. 4, 41(6), 1003–1022 (2008)

    MATH  Google Scholar 

  28. Raynaud, M.: Variétés abéliennes et géométrie rigide. Actes Congr. Int. Nice 1, 473–477 (1970)

    Google Scholar 

  29. Rohrlich, D.: The vanishing of certain Rankin-Selberg convolutions. In: Automorphic Forms and Analytic Number Theory, pp. 123–133. Les publications CRM, Montreal (1990)

    Google Scholar 

  30. Rohrlich, D.: Elliptic curves and the Weil-Deligne group. In: Elliptic Curves and Related Topics. CRM Proc. Lecture Notes, vol. 4, pp. 125–157. Am. Math. Soc., Providence (1994)

    Google Scholar 

  31. Rohrlich, D.: Galois theory, elliptic curves, and root numbers. Compos. Math. 100, 311–349 (1996)

    MATH  MathSciNet  Google Scholar 

  32. Rohrlich, D.: Scarcity and abundance of trivial zeros in division towers. J. Algebraic Geom. 17, 643–675 (2008)

    MATH  MathSciNet  Google Scholar 

  33. Rohrlich, D.: Galois invariance of local root numbers. Preprint (2008)

  34. Sabitova, M.: Root numbers of abelian varieties and representations of the Weil-Deligne group. Ph.D. thesis, Univ. Pennsylvania (2005)

  35. Sabitova, M.: Root numbers of abelian varieties. Trans. Am. Math. Soc. 359(9), 4259–4284 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Serre, J.-P.: Abelian l-adic Representations and Elliptic Curves. Addison-Wesley, Reading (1989)

    Google Scholar 

  37. Serre, J.-P.: Linear Representations of Finite Groups, GTM 42. Springer, Berlin (1977)

    Google Scholar 

  38. Silverman, J.H.: The Arithmetic of Elliptic Curves, GTM 106. Springer, Berlin (1986)

    Google Scholar 

  39. Silverman, J.H.: Advanced Topics in the Arithmetic of Elliptic Curves, GTM 151. Springer, Berlin (1994)

    Google Scholar 

  40. Tate, J.: Number theoretic background. In: Borel, A., Casselman, W. (eds.) Automorphic Forms, Representations and L-Functions, Part 2. Proc. Symp. in Pure Math., vol. 33, pp. 3–26. AMS, Providence (1979)

    Google Scholar 

  41. Tate, J.: On the conjectures of Birch and Swinnerton-Dyer and a geometric analog. Séminaire Bourbaki, 18e année, no. 306 (1965/66)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Dokchitser.

Additional information

T. Dokchitser is supported by a Royal Society University Research Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dokchitser, T., Dokchitser, V. Regulator constants and the parity conjecture. Invent. math. 178, 23–71 (2009). https://doi.org/10.1007/s00222-009-0193-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-009-0193-7

Mathematics Subject Classification (2000)

Navigation