Abstract
In 1952 Lee and Yang proposed the program of analyzing phase transitions in terms of zeros of partition functions. Linear operators preserving non-vanishing properties are essential in this program and various contexts in complex analysis, probability theory, combinatorics, and matrix theory. We characterize all linear operators on finite or infinite-dimensional spaces of multivariate polynomials preserving the property of being non-vanishing whenever the variables are in prescribed open circular domains. In particular, this solves the higher dimensional counterpart of a long-standing classification problem originating from classical works of Hermite, Laguerre, Hurwitz and Pólya-Schur on univariate polynomials with such properties.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
Asano, T.: Theorems on the partition functions of the Heisenberg ferromagnets. J. Phys. Soc. Jpn. 29, 350–359 (1970)
Atiyah, M.F., Bott, R., Gårding, L.: Lacunas for hyperbolic differential operators with constant coefficients I. Acta Math. 124, 109–189 (1970)
Beauzamy, B.: On complex Lee and Yang polynomials. Commun. Math. Phys. 182, 177–184 (1996)
Biskup, M., Borgs, C., Chayes, J.T., Kleinwaks, L.J., Kotecky, R.: Partition function zeros at first-order phase transitions: A general analysis. Commun. Math. Phys. 251, 79–131 (2004)
Biskup, M., Borgs, C., Chayes, J.T., Kotecky, R.: Partition function zeros at first-order phase transitions: Pirogov-Sinai theory. J. Stat. Phys. 116, 97–155 (2004)
Borcea, J., Brändén, P.: Applications of stable polynomials to mixed determinants: Johnson’s conjectures, unimodality, and symmetrized Fischer products. Duke Math. J. 143, 205–223 (2008)
Borcea, J., Brändén, P.: The Lee-Yang and Pólya-Schur programs. II. Theory of stable polynomials and applications. arXiv:0809.3087
Borcea, J., Brändén, P.: Pólya-Schur master theorems for circular domains and their boundaries. Ann. Math. (to appear). arXiv:math/0607416
Borcea, J., Brändén, P.: Multivariate Pólya-Schur classification problems in the Weyl algebra. arXiv:math/0606360
Borcea, J., Brändén, P., Liggett, T.M.: Negative dependence and the geometry of polynomials. J. Am. Math. Soc. 22, 521–567 (2009). arXiv:0707.2340
Borcea, J., Brändén, P., Csordas, G., Vinnikov, V.: Pólya-Schur-Lax problems: hyperbolicity and stability preservers, Workshop Report, American Institute of Mathematics, Palo Alto, CA, May–June 2007. http://www.aimath.org/pastworkshops/polyaschurlax.html
Brändén, P.: Polynomials with the half-plane property and matroid theory. Adv. Math. 216, 302–320 (2007)
Choe, Y., Oxley, J., Sokal, A.D., Wagner, D.G.: Homogeneous multivariate polynomials with the half-plane property. Adv. Appl. Math. 32, 88–187 (2004)
Craven, T., Csordas, G.: Multiplier sequences for fields. Ill. J. Math. 21, 801–817 (1977)
Craven, T., Csordas, G.: Composition theorems, multiplier sequences and complex zero decreasing sequences. In: Barsegian, G., Laine, I., Yang, C.C. (eds.) Value Distribution Theory and Its Related Topics, pp. 131–166. Kluwer, Dordrecht (2004)
Craven, T., Csordas, G., Smith, W.: The zeros of derivatives of entire functions and the Pólya-Wiman conjecture. Ann. Math. (2) 125, 405–431 (1987)
Csordas, G.: Linear operators and the distribution of zeros of entire functions. Complex Var. Elliptic Equ. 51, 625–632 (2006)
Edrei, A.: Power series having partial sums with zeros in a half-plane. Proc. Am. Math. Soc. 9, 320–324 (1958)
Fisk, S.: Polynomials, roots, and interlacing. Versions 1–2. http://www.bowdoin.edu/fisk/, xx+700 pp
Gårding, L.: An inequality for hyperbolic polynomials. J. Math. Mech. 8, 957–965 (1959)
Grace, J.H.: The zeros of a polynomial. Proc. Camb. Philos. Soc. 11, 352–357 (1902)
Heilmann, O.J., Lieb, E.H.: Theory of monomer-dimer systems. Commun. Math. Phys. 25, 190–232 (1972)
Hinkkanen, A.: Schur products of certain polynomials. In: Dodziuk, J., Keenin, L. (eds.) Lipa’s Legacy: Proceedings of the Bers Colloquium. Contemp. Math., vol. 211, pp. 285–295. Am. Math. Soc., Providence (1997)
Hörmander, L.: Notions of Convexity. Progr. Math., vol. 127. Birkhäuser, Boston (1994)
Iserles, A., Nørsett, S.P., Saff, E.B.: On transformations and zeros of polynomials. Rocky Mt. J. Math. 21, 331–357 (1991)
Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. Math. 163(2), 1019–1056 (2006)
Laguerre, E.: Fonctions du genre zéro et du genre un. C. R. Acad. Sci. Paris 95, 828–831 (1882)
Lax, P.D.: Differential equations, difference equations and matrix theory. Commun. Pure Appl. Math. 6, 175–194 (1958)
Lee, T.D., Yang, C.N.: Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev. 87, 410–419 (1952)
Levin, B.Ja.: Distribution of Zeros of Entire Functions. Transl. Math. Monogr., vol. 5. Am. Math. Soc., Providence (1980)
Lieb, E.H., Sokal, A.D.: A general Lee-Yang theorem for one-component and multicomponent ferromagnets. Commun. Math. Phys. 80, 153–179 (1981)
Liggett, T.M.: Distributional limits for the symmetric exclusion process. Stoch. Process. Appl. 119, 1–15 (2009). arXiv:0710.3606
Marden, M.: The Geometry of the Zeros of a Polynomial in a Complex Variable. Math. Surveys, vol. 3. Am. Math. Soc., New York (1949)
Newman, C.M.: Zeros of the partition function for generalized Ising systems. Commun. Pure Appl. Math. 27, 143–159 (1974)
Newman, C.M.: Inequalities for Ising models and field theories which obey the Lee-Yang theorem. Commun. Math. Phys. 41, 1–9 (1975)
Pólya, G.: Bemerkung über die Integraldarstellung der Riemannsche ξ-Funktion. Acta Math. 48, 305–317 (1926)
Pólya, G.: Collected Papers, vol. II: Location of Zeros. Mathematicians of our Time, vol. 8. MIT Press, Cambridge (1974). ed. R.P. Boas
Pólya, G., Schur, I.: Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen. J. Reine Angew. Math. 144, 89–113 (1914)
Pólya, G., Szegö, G.: Problems and Theorems in Analysis, vol. II. Springer, Berlin (1976)
Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials. London Math. Soc. Monogr. (N.S.), vol. 26. Oxford Univ. Press, New York (2002)
Ruelle, D.: Extension of the Lee–Yang circle theorem. Phys. Rev. Lett. 26, 303–304 (1971)
Ruelle, D.: Is our mathematics natural? The case of equilibrium statistical mechanics. Bull. Am. Math. Soc. (N.S.) 19, 259–268 (1988)
Ruelle, D.: Zeros of graph-counting polynomials. Commun. Math. Phys. 200, 43–56 (1999)
Ruelle, D.: Statistical Mechanics: Rigorous Results. World Scientific, River Edge (1999). Reprint of the 1989 edition
Ruelle, D.: Grace-like polynomials. In: Foundations of Computational Mathematics, Hong Kong, 2000, pp. 405–421. World Scientific, River Edge (2002)
Schur, I.: Zwei Sätze über algebraische Gleichungen mit lauter reellen Wurzeln. J. Reine Angew. Math. 144, 75–88 (1923)
Scott, A.D., Sokal, A.D.: The repulsive lattice gas, the independent-set polynomial, and the Lovász local lemma. J. Stat. Phys. 118, 1151–1261 (2005). arXiv:cond-mat/0309352
Sokal, A.D.: Chromatic roots are dense in the whole complex plane. Comb. Probab. Comput. 13, 221–261 (2004)
Sokal, A.D.: The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In: Webb, B.S. (ed.) Surveys in Combinatorics, 2005. Cambridge Univ. Press, Cambridge (2005). arXiv:math.CO/0503607
Szász, O.: On sequences of polynomials and the distribution of their zeros. Bull. Am. Math. Soc. 49, 377–383 (1943)
Szegö, G.: Bemerkungen zu einem Satz von J.H. Grace über die Wurzeln algebraischer Gleichungen. Math. Z. 13, 28–55 (1922)
Wagner, D.G.: Weighted enumeration of spanning subgraphs with degree constraints. arXiv:0803.1659
Walsh, J.L.: On the location of the roots of certain types of polynomials. Trans. Am. Math. Soc. 24, 163–180 (1922)
Yang, C.N., Lee, T.D.: Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev. 87, 404–409 (1952)
Author information
Authors and Affiliations
Corresponding author
Additional information
The first author is supported by the Royal Swedish Academy of Sciences. The second author is supported by the Göran Gustafsson Foundation.
Rights and permissions
About this article
Cite this article
Borcea, J., Brändén, P. The Lee-Yang and Pólya-Schur programs. I. Linear operators preserving stability. Invent. math. 177, 541–569 (2009). https://doi.org/10.1007/s00222-009-0189-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00222-009-0189-3