Skip to main content
Log in

The Lee-Yang and Pólya-Schur programs. I. Linear operators preserving stability

Inventiones mathematicae Aims and scope

Cite this article

Abstract

In 1952 Lee and Yang proposed the program of analyzing phase transitions in terms of zeros of partition functions. Linear operators preserving non-vanishing properties are essential in this program and various contexts in complex analysis, probability theory, combinatorics, and matrix theory. We characterize all linear operators on finite or infinite-dimensional spaces of multivariate polynomials preserving the property of being non-vanishing whenever the variables are in prescribed open circular domains. In particular, this solves the higher dimensional counterpart of a long-standing classification problem originating from classical works of Hermite, Laguerre, Hurwitz and Pólya-Schur on univariate polynomials with such properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Asano, T.: Theorems on the partition functions of the Heisenberg ferromagnets. J. Phys. Soc. Jpn. 29, 350–359 (1970)

    Article  MathSciNet  Google Scholar 

  2. Atiyah, M.F., Bott, R., Gårding, L.: Lacunas for hyperbolic differential operators with constant coefficients I. Acta Math. 124, 109–189 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beauzamy, B.: On complex Lee and Yang polynomials. Commun. Math. Phys. 182, 177–184 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Biskup, M., Borgs, C., Chayes, J.T., Kleinwaks, L.J., Kotecky, R.: Partition function zeros at first-order phase transitions: A general analysis. Commun. Math. Phys. 251, 79–131 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Biskup, M., Borgs, C., Chayes, J.T., Kotecky, R.: Partition function zeros at first-order phase transitions: Pirogov-Sinai theory. J. Stat. Phys. 116, 97–155 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borcea, J., Brändén, P.: Applications of stable polynomials to mixed determinants: Johnson’s conjectures, unimodality, and symmetrized Fischer products. Duke Math. J. 143, 205–223 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Borcea, J., Brändén, P.: The Lee-Yang and Pólya-Schur programs. II. Theory of stable polynomials and applications. arXiv:0809.3087

  8. Borcea, J., Brändén, P.: Pólya-Schur master theorems for circular domains and their boundaries. Ann. Math. (to appear). arXiv:math/0607416

  9. Borcea, J., Brändén, P.: Multivariate Pólya-Schur classification problems in the Weyl algebra. arXiv:math/0606360

  10. Borcea, J., Brändén, P., Liggett, T.M.: Negative dependence and the geometry of polynomials. J. Am. Math. Soc. 22, 521–567 (2009). arXiv:0707.2340

    Article  Google Scholar 

  11. Borcea, J., Brändén, P., Csordas, G., Vinnikov, V.: Pólya-Schur-Lax problems: hyperbolicity and stability preservers, Workshop Report, American Institute of Mathematics, Palo Alto, CA, May–June 2007. http://www.aimath.org/pastworkshops/polyaschurlax.html

  12. Brändén, P.: Polynomials with the half-plane property and matroid theory. Adv. Math. 216, 302–320 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Choe, Y., Oxley, J., Sokal, A.D., Wagner, D.G.: Homogeneous multivariate polynomials with the half-plane property. Adv. Appl. Math. 32, 88–187 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Craven, T., Csordas, G.: Multiplier sequences for fields. Ill. J. Math. 21, 801–817 (1977)

    MATH  MathSciNet  Google Scholar 

  15. Craven, T., Csordas, G.: Composition theorems, multiplier sequences and complex zero decreasing sequences. In: Barsegian, G., Laine, I., Yang, C.C. (eds.) Value Distribution Theory and Its Related Topics, pp. 131–166. Kluwer, Dordrecht (2004)

    Chapter  Google Scholar 

  16. Craven, T., Csordas, G., Smith, W.: The zeros of derivatives of entire functions and the Pólya-Wiman conjecture. Ann. Math. (2) 125, 405–431 (1987)

    Article  MathSciNet  Google Scholar 

  17. Csordas, G.: Linear operators and the distribution of zeros of entire functions. Complex Var. Elliptic Equ. 51, 625–632 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Edrei, A.: Power series having partial sums with zeros in a half-plane. Proc. Am. Math. Soc. 9, 320–324 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fisk, S.: Polynomials, roots, and interlacing. Versions 1–2. http://www.bowdoin.edu/fisk/, xx+700 pp

  20. Gårding, L.: An inequality for hyperbolic polynomials. J. Math. Mech. 8, 957–965 (1959)

    MATH  MathSciNet  Google Scholar 

  21. Grace, J.H.: The zeros of a polynomial. Proc. Camb. Philos. Soc. 11, 352–357 (1902)

    Google Scholar 

  22. Heilmann, O.J., Lieb, E.H.: Theory of monomer-dimer systems. Commun. Math. Phys. 25, 190–232 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hinkkanen, A.: Schur products of certain polynomials. In: Dodziuk, J., Keenin, L. (eds.) Lipa’s Legacy: Proceedings of the Bers Colloquium. Contemp. Math., vol. 211, pp. 285–295. Am. Math. Soc., Providence (1997)

    Google Scholar 

  24. Hörmander, L.: Notions of Convexity. Progr. Math., vol. 127. Birkhäuser, Boston (1994)

    Google Scholar 

  25. Iserles, A., Nørsett, S.P., Saff, E.B.: On transformations and zeros of polynomials. Rocky Mt. J. Math. 21, 331–357 (1991)

    Article  MATH  Google Scholar 

  26. Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. Math. 163(2), 1019–1056 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Laguerre, E.: Fonctions du genre zéro et du genre un. C. R. Acad. Sci. Paris 95, 828–831 (1882)

    Google Scholar 

  28. Lax, P.D.: Differential equations, difference equations and matrix theory. Commun. Pure Appl. Math. 6, 175–194 (1958)

    Article  MathSciNet  Google Scholar 

  29. Lee, T.D., Yang, C.N.: Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev. 87, 410–419 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  30. Levin, B.Ja.: Distribution of Zeros of Entire Functions. Transl. Math. Monogr., vol. 5. Am. Math. Soc., Providence (1980)

    Google Scholar 

  31. Lieb, E.H., Sokal, A.D.: A general Lee-Yang theorem for one-component and multicomponent ferromagnets. Commun. Math. Phys. 80, 153–179 (1981)

    Article  MathSciNet  Google Scholar 

  32. Liggett, T.M.: Distributional limits for the symmetric exclusion process. Stoch. Process. Appl. 119, 1–15 (2009). arXiv:0710.3606

    Article  MATH  MathSciNet  Google Scholar 

  33. Marden, M.: The Geometry of the Zeros of a Polynomial in a Complex Variable. Math. Surveys, vol. 3. Am. Math. Soc., New York (1949)

    MATH  Google Scholar 

  34. Newman, C.M.: Zeros of the partition function for generalized Ising systems. Commun. Pure Appl. Math. 27, 143–159 (1974)

    Article  Google Scholar 

  35. Newman, C.M.: Inequalities for Ising models and field theories which obey the Lee-Yang theorem. Commun. Math. Phys. 41, 1–9 (1975)

    Article  Google Scholar 

  36. Pólya, G.: Bemerkung über die Integraldarstellung der Riemannsche ξ-Funktion. Acta Math. 48, 305–317 (1926)

    Article  MATH  MathSciNet  Google Scholar 

  37. Pólya, G.: Collected Papers, vol. II: Location of Zeros. Mathematicians of our Time, vol. 8. MIT Press, Cambridge (1974). ed. R.P. Boas

    Google Scholar 

  38. Pólya, G., Schur, I.: Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen. J. Reine Angew. Math. 144, 89–113 (1914)

    MATH  Google Scholar 

  39. Pólya, G., Szegö, G.: Problems and Theorems in Analysis, vol. II. Springer, Berlin (1976)

    Google Scholar 

  40. Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials. London Math. Soc. Monogr. (N.S.), vol. 26. Oxford Univ. Press, New York (2002)

    MATH  Google Scholar 

  41. Ruelle, D.: Extension of the Lee–Yang circle theorem. Phys. Rev. Lett. 26, 303–304 (1971)

    Article  MathSciNet  Google Scholar 

  42. Ruelle, D.: Is our mathematics natural? The case of equilibrium statistical mechanics. Bull. Am. Math. Soc. (N.S.) 19, 259–268 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  43. Ruelle, D.: Zeros of graph-counting polynomials. Commun. Math. Phys. 200, 43–56 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  44. Ruelle, D.: Statistical Mechanics: Rigorous Results. World Scientific, River Edge (1999). Reprint of the 1989 edition

    Google Scholar 

  45. Ruelle, D.: Grace-like polynomials. In: Foundations of Computational Mathematics, Hong Kong, 2000, pp. 405–421. World Scientific, River Edge (2002)

    Google Scholar 

  46. Schur, I.: Zwei Sätze über algebraische Gleichungen mit lauter reellen Wurzeln. J. Reine Angew. Math. 144, 75–88 (1923)

    Google Scholar 

  47. Scott, A.D., Sokal, A.D.: The repulsive lattice gas, the independent-set polynomial, and the Lovász local lemma. J. Stat. Phys. 118, 1151–1261 (2005). arXiv:cond-mat/0309352

    Article  MATH  MathSciNet  Google Scholar 

  48. Sokal, A.D.: Chromatic roots are dense in the whole complex plane. Comb. Probab. Comput. 13, 221–261 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  49. Sokal, A.D.: The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In: Webb, B.S. (ed.) Surveys in Combinatorics, 2005. Cambridge Univ. Press, Cambridge (2005). arXiv:math.CO/0503607

    Google Scholar 

  50. Szász, O.: On sequences of polynomials and the distribution of their zeros. Bull. Am. Math. Soc. 49, 377–383 (1943)

    Article  MATH  Google Scholar 

  51. Szegö, G.: Bemerkungen zu einem Satz von J.H. Grace über die Wurzeln algebraischer Gleichungen. Math. Z. 13, 28–55 (1922)

    Article  MathSciNet  Google Scholar 

  52. Wagner, D.G.: Weighted enumeration of spanning subgraphs with degree constraints. arXiv:0803.1659

  53. Walsh, J.L.: On the location of the roots of certain types of polynomials. Trans. Am. Math. Soc. 24, 163–180 (1922)

    Article  Google Scholar 

  54. Yang, C.N., Lee, T.D.: Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev. 87, 404–409 (1952)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petter Brändén.

Additional information

The first author is supported by the Royal Swedish Academy of Sciences. The second author is supported by the Göran Gustafsson Foundation.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Borcea, J., Brändén, P. The Lee-Yang and Pólya-Schur programs. I. Linear operators preserving stability. Invent. math. 177, 541–569 (2009). https://doi.org/10.1007/s00222-009-0189-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-009-0189-3

Mathematics Subject Classification (2000)

Navigation