Skip to main content
Log in

Effective equidistribution for closed orbits of semisimple groups on homogeneous spaces

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove effective equidistribution, with polynomial rate, for large closed orbits of semisimple groups on homogeneous spaces, under certain technical restrictions (notably, the acting group should have finite centralizer in the ambient group). The proofs make extensive use of spectral gaps, and also of a closing lemma for such actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benoist, Y., Oh, H.: Effective equidistribution of S-integral points on symmetric varieties. Preprint. arxiv:0706.1621

  2. Bernstein, J., Reznikov, A.: Sobolev norms of automorphic functionals. Int. Math. Res. Not. 40, 2155–2174 (2002)

    Article  MathSciNet  Google Scholar 

  3. Borel, A., Tits, J.: Eléments unipotents et sous-groupes paraboliques de groupes reductifs I. Invent. Math. 12, 95–104 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  4. Burger, M.: Horocycle flow on geometrically finite surfaces. Duke Math. J. 61(3), 779–803 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Burger, M., Sarnak, P.: Ramanujan duals II. Invent. Math. 106(1), 1–11 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Clozel, L.: Démonstration de la conjecture τ. Invent. Math. 151(2), 297–328 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Clozel, L., Oh, H., Ullmo, E.: Hecke operators and equidistribution of Hecke points. Invent. Math. 144(2), 327–351 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cowling, M.: Sur les coefficients des representations unitaires des groupes de Lie simples. In: Analyse Harmonique sur les Groupes de Lie, II. Lecture Notes in Math., vol. 739, pp. 132–178. Springer, Berlin (1979)

    Chapter  Google Scholar 

  9. Cowling, M., Haagerup, U., Howe, R.: Almost L 2 matrix coefficients. J. Reine Angew. Math. 387, 97–110 (1988)

    MATH  MathSciNet  Google Scholar 

  10. Dani, S.: On orbits of unipotent flows on homogeneous spaces. II. Ergod. Theory Dyn. Syst. 6(2), 167–182 (1986)

    MATH  MathSciNet  Google Scholar 

  11. Dani, S.G., Margulis, G.A.: Values of quadratic forms at primitive integral points. Invent. Math. 98(2), 405–424 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dani, S.G., Margulis, G.A.: Orbit closures of generic unipotent flows on homogeneous spaces of SL(3,R). Math. Ann. 286(1–3), 101–128 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dani, S., Margulis, G.: Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces. Proc. Indian Acad. Sci. Math. Sci. 101(1), 1–17 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dani, S., Margulis, G.: Limit distributions of orbits of unipotent flows and values of quadratic forms. Adv. Soviet. Math. 16, 91–137 (1993)

    MathSciNet  Google Scholar 

  15. Dani, S., Smillie, J.: Uniform distribution of horocycle orbits for Fuchsian groups. Duke Math. J. 51(1), 185–194 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Duke, W., Rudnick, Z., Sarnak, P.: Density of integer points on affine homogeneous varieties. Duke Math. J. 71, 143–179 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Einsiedler, M.: Ratner’s theorem on SL (2,ℝ)-invariant measures. Jahresber. Dtsch. Math.-Ver. 108(3), 143–164 (2006)

    MATH  MathSciNet  Google Scholar 

  18. Einsiedler, M., Lindenstrauss, E., Michel, P., Venkatesh, A.: Distribution of periodic torus orbits on homogeneous spaces. Preprint. arxiv:math/0607815

  19. Eskin, A., McMullen, C.: Mixing, counting, and equidistribution in Lie groups. Duke Math. J. 71(1), 181–209 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ellenberg, J., Venkatesh, A.: Local-global principles for representations of quadratic forms. Preprint. arxiv:math/0604232

  21. Eskin, A., Oh, H.: Ergodic theoretic proof of equidistribution of Hecke points. Ergod. Theory Dyn. Syst. 26(1), 163–167 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Eskin, A., Oh, H.: Representations of integers by an invariant polynomial, and unipotent flows. Duke Math. J. 135(3), 481–506 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Flaminio, L., Forni, G.: Invariant distributions and time averages for horocycle flows. Duke Math. J. 119, 465–526 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gogodnik, A., Nevo, A.: The ergodic theory of lattice subgroups. Preprint. arxiv:math.NT/0605596

  25. Gorodnik, A., Maucourant, F., Oh, H.: Manin’s conjecture on rational points of bounded height and adelic mixing. Preprint. arxiv:math.NT/0601127

  26. Gorodnik, A., Oh, H., Shah, N.: Integral points on symmetric varieties and Satake compactifications. Preprint. arxiv:math.NT/0610497

  27. Gorodnik, A., Weiss, B.: Distribution of lattice orbits on homogeneous varieties. Geom. Funct. Anal. 17(1), 58–115 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Howe, R., Moore, C.: Asymptotic properties of unitary representations. J. Funct. Anal. 32(1), 72–96 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  29. Howe, R., Tan, E.-C.: Nonabelian Harmonic Analysis. Applications of SL(2,R). Universitext. Springer, New York (1992)

    Google Scholar 

  30. Jiang, D., Li, J.-S., Zhang, S.: Periods and distribution of cycles on Hilbert modular varieties. Pure Appl. Math. Q. 2(1), 219–277 (2006)

    MATH  MathSciNet  Google Scholar 

  31. Kleinbock, D., Margulis, G.: Logarithm laws for flows on homogeneous spaces. Invent. Math. 138(3), 451–494 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kleinbock, D., Margulis, G.: Flows on homogeneous spaces and Diophantine approximation on manifolds. Ann. Math. (2) 148(1), 339–360 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kleinbock, D., Shah, N., Starkov, A.: Dynamics of subgroup actions on homogeneous spaces of Lie groups and applications to number theory. In: Handbook of Dynamical Systems, vol. 1A, pp. 813–930. North-Holland, Amsterdam (2002)

    Google Scholar 

  34. Knapp, A.: Lie Groups Beyond an Introduction. Birkhäuser, Cambridge (2002)

    MATH  Google Scholar 

  35. Knapp, A.: Representation Theory of Semisimple Groups. Princeton University Press, Princeton (2001)

    MATH  Google Scholar 

  36. Li, J.-S.: The minimal decay of matrix coefficients for classical groups Harmonic analysis in China. Math. Appl. 327, 146–169 (1995)

    Google Scholar 

  37. Li, J.-S., Zhu, C.-B.: On the decay of matrix coefficients for exceptional groups. Math. Ann. 305(2), 249–270 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  38. Luna, D.: Sur certaines opérations différentiables des groupes de Lie. Am. J. Math. 97, 172–181 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  39. Malgrange, B.: Ideals of Differentiable Functions. Oxford University Press, London (1966)

    MATH  Google Scholar 

  40. Margulis, G.A.: The action of unipotent groups in a lattice space. Mat. Sb. (N.S.) 86(128), 552–556 (1971)

    MathSciNet  Google Scholar 

  41. Margulis, G.A.: Discrete subgroups of semisimple Lie groups. In: Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (1989)

    Google Scholar 

  42. Margulis, G.A.: Formes quadratriques indèfinies et flots unipotents sur les espaces homogënes. C. R. Acad. Sci. Paris Sér. I Math. 304(10), 249–253 (1987)

    MATH  MathSciNet  Google Scholar 

  43. Margulis, G.A.: Discrete subgroups and ergodic theory. In: Number Theory, Trace Formulas and Discrete Groups, Oslo, 1987, pp. 377–398. Academic Press, San Diego (1989)

    Google Scholar 

  44. Margulis, G.A.: Indefinite quadratic forms and unipotent flows on homogeneous spaces. In: Dynamical Systems and Ergodic Theory, Warsaw, 1986. Banach Center Publ., vol. 23, pp. 399–409. PWN, Warsaw (1989)

    Google Scholar 

  45. Margulis, G.A.: On Some Aspects of the Theory of Anosov Systems. Springer Monographs in Mathematics. Springer, Berlin (2004)

    MATH  Google Scholar 

  46. Margulis, G.A., Tomanov, G.: Invariant measures for actions of unipotent groups over local fields on homogeneous spaces. Invent. Math. 116(1–3), 347–392 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  47. Maucourant, F.: Homogeneous asymptotic limits of Haar measures of semisimple linear groups and their lattices. Duke Math. J. 136(2), 357–399 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  48. Michel, P., Venkatesh, A.: Equidistribution, L-functions and ergodic theory: on some problems of Yu.V. Linnik. International Congress of Mathematicians II, pp. 421–457 (2006). Eur. Math. Soc., Zürich

  49. Moore, C.C.: Exponential decay of correlation coefficients for geodesic flows. Group representations, ergodic theory, operator algebras and mathematical physics: proceedings of a conference in honor of G.W. Mackey. Math. Sciences Research Institute publications, no. 6 (1987)

  50. Mozes, S., Shah, N.: On the space of ergodic invariant measures of unipotent flows. Ergod. Theory Dyn. Syst. 15(1), 149–159 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  51. Nevo, A.: Spectral transfer and pointwise ergodic theorems for semi-simple Kazhdan groups. Math. Res. Lett. 5(3), 305–325 (1998)

    MATH  MathSciNet  Google Scholar 

  52. Oh, H.: Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants. Duke Math. J. 113(1), 133–192 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  53. Quint, J.-F.: Propriété de Kazhdan et sous-groupes discrets de covolume infini. Trav. Math. XIV, 143–151 (2003)

    MathSciNet  Google Scholar 

  54. Ratner, M.: Rigidity of horocycle flows. Ann. Math. 115, 597–614 (1982)

    Article  MathSciNet  Google Scholar 

  55. Ratner, M.: Factors of horocycle flows. Ergod. Theory Dyn. Syst. 2(3–4), 465–489 (1982)

    MATH  MathSciNet  Google Scholar 

  56. Ratner, M.: Horocycle flows, joinings and rigidity of products. Ann. Math. (2) 118(2), 277–313 (1983)

    Article  MathSciNet  Google Scholar 

  57. Ratner, M.: Rigidity of time changes for horocycle flows. Acta Math. 156, 1–32 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  58. Ratner, M.: On measure rigidity of unipotent subgroups of semisimple groups. Acta Math. 165, 229–309 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  59. Ratner, M.: Strict measure rigidity for unipotent subgroups of solvable groups. Invent. Math. 101, 449–482 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  60. Ratner, M.: Raghunathan’s topological conjecture and distributions of unipotent flows. Duke Math. J. 63(1), 235–280 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  61. Ratner, M.: On Raghunathan’s measure conjecture. Ann. Math. (2) 134(3), 545–607 (1991)

    Article  MathSciNet  Google Scholar 

  62. Ratner, M.: Raghunathan’s conjectures for SL (2,ℝ). Isr. J. Math. 80, 1–31 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  63. Ratner, M.: Raghunathan’s conjectures for Cartesian products of real and p-adic Lie groups. Duke Math. J. 77(2), 275–382 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  64. Richardson, R.W.: Conjugacy classes in Lie algebras and algebraic groups. Ann. Math. 86, 1–15 (1967)

    Article  Google Scholar 

  65. Sarnak, P.: Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series. Commun. Pure Appl. Math. 34, 719–739 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  66. Shalom, Y.: Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group. Ann. Math. (2) 152(1), 113–182 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  67. Strömbergsson, A.: On the uniform equidistribution of long closed horocycles. Duke. Math. J. 123, 507–547 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  68. Venkatesh, A.: Sparse equidistribution problems, period bounds, and subconvexity. Preprint. arxiv:math/0506224

  69.  Wallach, N.: Real Reductive Groups I. Pure and Applied Mathematics, vol. 132. Academic Press, San Diego (1988)

    MATH  Google Scholar 

  70. Weisfeiler, B.: On one class of unipotent subgroups of semisimple algebraic groups. arxiv:math/0005149

  71. Witte, D.: Rigidity of some translations on homogeneous spaces. Bull. Am. Math. Soc. (N.S.) 12(1), 117–119 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  72. Witte, D.: Rigidity of some translations on homogeneous spaces. Invent. Math. 81, 1–27 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  73. Witte Morris, D.: Ratner’s Theorems on Unipotent Flows. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (2005). xii+203 pp.

    MATH  Google Scholar 

  74. Witte, D., Yukie, A., Zierau, R.: Prehomogeneous vector spaces and ergodic theory II. Trans. Am. Math. Soc. 352(4), 1687–1708 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  75. Yukie, A.: Prehomogeneous vector spaces and ergodic theory I. Duke Math. J. 90(1), 123–147 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Einsiedler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einsiedler, M., Margulis, G. & Venkatesh, A. Effective equidistribution for closed orbits of semisimple groups on homogeneous spaces. Invent. math. 177, 137–212 (2009). https://doi.org/10.1007/s00222-009-0177-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-009-0177-7

Keywords

Navigation