Skip to main content
Log in

Smooth interval maps have symbolic extensions

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove that if X denotes the interval or the circle then every transformation T:XX of class C r, where r>1 is not necessarily an integer, admits a symbolic extension, i.e., every such transformation is a topological factor of a subshift over a finite alphabet. This is done using the theory of entropy structure. For such transformations we control the entropy structure by providing an upper bound, in terms of Lyapunov exponents, of local entropy in the sense of Newhouse of an ergodic measure ν near an invariant measure μ (the antarctic theorem). This bound allows us to estimate the so-called symbolic extension entropy function on invariant measures (the main theorem), and as a consequence, to estimate the topological symbolic extension entropy; i.e., a number such that there exists a symbolic extension with topological entropy arbitrarily close to that number. This last estimate coincides, in dimension 1, with a conjecture stated by Downarowicz and Newhouse [13, Conjecture 1.2]. The passage from the antarctic theorem to the main theorem is applicable to any topological dynamical system, not only to smooth interval or circle maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asaoka, M.: Hyperbolic sets exhibiting C 1-persistent homoclinic tangency for higher dimensions. Proc. Am. Math. Soc. 136, 677–686 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bonatti, C., Díaz, L., Fisher, T.: Super-exponential growth of the number of periodic orbits inside homoclinic classes. Discrete Contin. Dyn. Syst. 20, 589–604 (2008)

    MATH  MathSciNet  Google Scholar 

  3. Boyle, M., Downarowicz, T.: The entropy theory of symbolic extensions. Invent. Math. 156, 119–161 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boyle, M., Downarowicz, T.: Symbolic extension entropy: C r examples, products and flows. Discrete Contin. Dyn. Syst. 16, 329–341 (2006)

    MATH  MathSciNet  Google Scholar 

  5. Boyle, M., Fiebig, D., Fiebig, U.: Residual entropy, conditional entropy and subshift covers. Forum Math. 14, 713–757 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Burguet, D.: A direct proof of the tail variational principle and its extension to maps. Ergodic Theory Dyn. Syst. (to appear)

  7. Burguet, D.: An example of interval map with large sex entropy. Preprint

  8. Buzzi, J.: Intrinsic ergodicity of smooth interval maps. Isr. J. Math. 100, 125–161 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Choquet, G.: Lectures on Analysis, Vol. II: Representation Theory. W.A. Benjamin, New York (1969)

  10. Denker, M., Grillenberger, C., Sigmund, K.: Ergodic Theory on Compact Spaces. Lect. Notes Math., vol. 527. Springer, Berlin (1976)

  11. Downarowicz, T.: Entropy of a symbolic extension of a totally disconnected dynamical system. Ergodic Theory Dyn. Syst. 21, 1051–1070 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Downarowicz, T.: Entropy structure. J. Anal. Math. 96, 57–116 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Downarowicz, T., Newhouse, S.: Symbolic extensions and smooth dynamical systems. Invent. Math. 160, 453–499 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Downarowicz, T., Serafin, J.: Possible entropy functions. Isr. J. Math. 135, 221–250 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Encycl. Math. Appl., vol. 54. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  16. Keller, G.: Equilibrium States in Ergodic Theory. Lond. Math. Soc. Stud. Texts, vol. 42. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  17. Misiurewicz, M.: Topological concitional entropy. Stud. Math. 55, 175–200 (1976)

    MATH  MathSciNet  Google Scholar 

  18. Newhouse, S.: Continuity properties of entropy. Ann. Math. 129, 215–235 (1989). Erratum: Ann. Math. 131, 409–410 (1990)

    Google Scholar 

  19. Phelps, R.: Lectures on Choquet’s Theorem, 2nd edn. Lect. Notes Math., vol. 1757. Springer, Berlin (2001)

  20. Yomdin, Y.: Volume growth and entropy. Isr. J. Math. 57, 285–301 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Downarowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Downarowicz, T., Maass, A. Smooth interval maps have symbolic extensions . Invent. math. 176, 617–636 (2009). https://doi.org/10.1007/s00222-008-0172-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-008-0172-4

Keywords

Navigation