Skip to main content
Log in

Menger’s theorem for infinite graphs

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove that Menger’s theorem is valid for infinite graphs, in the following strong version: let A and B be two sets of vertices in a possibly infinite digraph. Then there exist a set \(\mathcal{P}\) of disjoint AB paths, and a set S of vertices separating A from B, such that S consists of a choice of precisely one vertex from each path in \(\mathcal{P}\). This settles an old conjecture of Erdős.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharoni, R.: Menger’s theorem for graphs containing no infinite paths. Eur. J. Comb. 4, 201–204 (1983)

    MATH  MathSciNet  Google Scholar 

  2. Aharoni, R.: König’s duality theorem for infinite bipartite graphs. J. Lond. Math. Soc. 29, 1–12 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aharoni, R.: Menger’s theorem for countable graphs. J. Comb. Theory, Ser. B 43, 303–313 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aharoni, R.: Matchings in graphs of size ℵ1. J. Comb. Theory, Ser. B 36, 113–117 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aharoni, R.: Matchings in infinite graphs. J. Comb. Theory, Ser. B 44, 87–125 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aharoni, R.: Linkability in countable-like webs. In: Hahn, G., Sabidussi, G., Woodrow, R.E. (eds.) Cycles and Rays: Proceedings of the NATO Advanced Research Workshop on “Cycles and Rays: Basic Structures in Finite and Infinite Graphs”, held in Montreal, Canada, May 3–9, 1987, pp. 1–8. Springer (1987)

  7. Aharoni, R.: Infinite matching theory. Discrete Math. 95, 5–22 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Aharoni, R.: A few remarks on a conjecture of Erdős on the infinite version of Menger’s theorem. In: Graham, R.L., Nesteril, J. (eds.) The Mathematics of Paul Erdős, pp. 394–408. Springer, Berlin Heidelberg (1997)

    Google Scholar 

  9. Aharoni, R., Diestel, R.: Menger’s theorem for countable source sets. Comb. Probab. Comput. 3, 145–156 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Aharoni, R., Korman, V.: Greene–Kleitman’s theorem for infinite posets. Order 9, 245–253 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Aharoni, R., Nash-Williams, C.S.J., Shelah, S.: A general criterion for the existence of transversals. Proc. Lond. Math. Soc. 47, 43–68 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ahlswede, R., Khachatrian, L.H.: A counterexample to Aharoni’s strongly maximal matching conjecture. Discrete Math. 149, 289 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Damerell, M.R., Milner, E.C.: Necessary and sufficient conditions for transversals of countable set systems. J. Comb. Theory, Ser. A 17, 350–374 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  14. Diestel, R.: Graph Theory, 1st edn. Springer (1997)

  15. Fodor, G.: Eine Bemerkung zur Theorie der regressive Funktionen. Acta Sci. Math. 17, 139–142 (1956)

    MATH  MathSciNet  Google Scholar 

  16. Gallai, T.: Ein neuer Beweis eines Mengerschen Satzes. J. Lond. Math. Soc. 13, 188–192 (1938)

    Article  Google Scholar 

  17. Hall, P.: On representatives of subsets. J. Lond. Math. Soc. 10, 26–30 (1935)

    Article  MATH  Google Scholar 

  18. König, D.: Graphs and matrices. Mat. Fiz. Lapok 38, 116–119 (1931) (Hungarian)

    MATH  Google Scholar 

  19. König, D.: Theorie der endlichen und unendlichen Graphen. Akademischen Verlagsgesellschaft, Leipzig (1936) (Reprinted: Chelsea, New York, 1950)

  20. Lovász, L., Plummer, M.D.: Matching Theory. Ann. Math., vol. 29. North Holland (1991)

  21. McDiarmid, C.: On separated separating sets and Menger’s theorem. Congr. Numerantium 15, 455–459 (1976)

    MathSciNet  Google Scholar 

  22. Menger, K.: Zur allgemeinen Kurventhoerie. Fundam. Math. 10, 96–115 (1927)

    MATH  Google Scholar 

  23. Nash-Williams, C.S.J.A.: Infinite graphs – a survey. J. Comb. Theory 3, 286–301 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nash-Williams, C.S.J.A.: Which infinite set-systems have transversals? – A possible approach. In: Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972), pp. 237–253. Inst. Math. Appl., Southend-on-Sea (1972)

    Google Scholar 

  25. Nash-Williams, C.S.J.A.: Marriage in denumerable societies. J. Comb. Theory, Ser. A 19, 335–366 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  26. Nash-Williams, C.S.J.A.: Another criterion for marriage in denumerable societies. In: Bollobás, B. (ed.) Advances in Graph Theory. Ann. Discrete Math., vol. 3, pp. 165–179. North-Holland, Amsterdam (1978)

    Chapter  Google Scholar 

  27. Oellrich, H., Steffens, K.: On Dilworth’s decomposition theorem. Discrete Math. 15, 301–304 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  28. Podewski, K.-P., Steffens, K.: Injective choice functions for countable families. J. Comb. Theory, Ser. B 21, 40–46 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  29. Podewski, K.-P., Steffens, K.: Über Translationen und der Satz von Menger in unendlichen Graphen. Acta Math. Hung. 30, 69–84 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  30. Fiedler, M.: Theory of graphs and its applications. In: Proceedings of the Symposium held in Smolenice, June 1963. Czechoslovak Academy of Sciences, Prague (1964)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Aharoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aharoni, R., Berger, E. Menger’s theorem for infinite graphs. Invent. math. 176, 1–62 (2009). https://doi.org/10.1007/s00222-008-0157-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-008-0157-3

Keywords

Navigation