Abstract
We prove existence and uniqueness of solutions to the Klein–Gordon–Zakharov system in the energy space H 1×L 2 on some time interval which is uniform with respect to two large parameters c and α. These two parameters correspond to the plasma frequency and the sound speed. In the simultaneous high-frequency and subsonic limit, we recover the nonlinear Schrödinger system at the limit. We are also able to say more when we take the limits separately.
Similar content being viewed by others
References
Added, H., Added, S.: Equations of Langmuir turbulence and nonlinear Schrödinger equation: smoothness and approximation. J. Funct. Anal. 79(1), 183–210 (1988)
Bechouche, P., Mauser, N., Selberg, S.: Nonrelativistic limit of Klein–Gordon–Maxwell to Schrödinger–Poisson. Am. J. Math. 126(1), 31–64 (2004)
Bellan, P.M.: Fundamentals of Plasmas Physics. Cambridge University Press, Cambridge (2006)
Bergé, L., Bidégaray, B., Colin, T.: A perturbative analysis of the time-envelope approximation in strong Langmuir turbulence. Physica D 95(3-4), 351–379 (1996)
Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3(2), 107–156 (1993)
Bourgain, J., Colliander, J.: On wellposedness of the Zakharov system. Int. Math. Res. Not. 1996(11), 515–546 (1996)
Cazenave, T., Weissler, F.: The Cauchy problem for the critical nonlinear Schrödinger equation in Hs. Nonlinear Anal. 14(10), 807–836 (1990)
Colin, M., Colin, T.: On a quasilinear Zakharov system describing laser-plasma interactions. Differ. Integral Equ. 17(3-4), 297–330 (2004)
Dendy, R.-O.: Plasma Dynamics. Oxford University Press (1990)
Galusinski, C.: A singular perturbation problem in a system of nonlinear Schrödinger equation occurring in Langmuir turbulence. M2AN, Math. Model. Numer. Anal. 34, 109–125 (2000)
Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J. Funct. Anal. 32(1), 1–32 (1979)
Ginibre, J., Velo, G.: Time decay of finite energy solutions of the nonlinear Klein–Gordon and Schrödinger equations. Ann. Inst. Henri Poincaré, Phys. Théor. 43(4), 399–442 (1985)
Ginibre, J., Tsutsumi, Y., Velo, G.: On the Cauchy problem for the Zakharov system. J. Funct. Anal. 151(2), 384–436 (1997)
Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)
Kenig, C., Ponce, G., Vega, L.: On the Zakharov and Zakharov–Schulman systems. J. Funct. Anal. 127(1), 204–234 (1995)
Klainerman, S., Machedon, M.: Space-time estimates for null forms and the local existence theorem. Commun. Pure Appl. Math. 46(9), 1221–1268 (1993)
Koch, H., Tzvetkov, N.: On the local well-posedness of the Benjamin-Ono equation in H s(ℝ). Int. Math. Res. Not. 2003(26), 1449–1464 (2003)
Lindblad, H.: Counterexamples to local existence for semi-linear wave equations. Am. J. Math. 118(1), 1–16 (1996)
Masmoudi, N., Nakanishi, K.: Uniqueness of finite energy solutions for Maxwell–Dirac and Maxwell–Klein–Gordon equations. Commun. Math. Phys. 243, 123–136 (2003)
Masmoudi, N., Nakanishi, K.: From the Klein–Gordon–Zakharov system to the nonlinear Schrödinger equation. J. Hyperbolic Differ. Equ. 2(4), 975–1008 (2005)
Masmoudi, N., Nakanishi, K.: Unconditional uniqueness for the Zakharov type systems. Preprint (2008)
Nakamura, M., Wada, T.: Global existence and uniqueness of solutions to the Maxwell-Schrödinger equations. Commun. Math. Phys. 276(2), 315–339 (2007)
Ozawa, T., Tsutaya, K., Tsutsumi, Y.: Well-posedness in energy space for the Cauchy problem of the Klein–Gordon–Zakharov equations with different propagation speeds in three space dimensions. Math. Ann. 313(1), 127–140 (1999)
Ozawa, T., Tsutsumi, Y.: The nonlinear Schrödinger limit and the initial layer of the Zakharov equations. Differ. Integral Equ. 5(4), 721–745 (1992)
Schochet, S., Weinstein, M.: The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence. Commun. Math. Phys. 106(4), 569–580 (1986)
Sulem, C., Sulem, P.-L.: The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse. Appl. Math. Sci., vol. 139. Springer, New York (1999)
Tataru, D.: The X s θ spaces and unique continuation for solutions to the semilinear wave equation. Commun. Partial Differ. Equations 21(5–6), 841–887 (1996)
Texier, B.: WKB asymptotics for the Euler–Maxwell equations. Asymptotic Anal. 42(3–4), 211–250 (2005)
Texier, B.: Derivation of the Zakharov equations. Arch. Ration. Mech. Anal. 184(1), 121–183 (2007)
Zakharov, V.E.: Collapse of Langmuir waves. Sov. Phys. J. 35, 908–914 (1962)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Masmoudi, N., Nakanishi, K. Energy convergence for singular limits of Zakharov type systems. Invent. math. 172, 535–583 (2008). https://doi.org/10.1007/s00222-008-0110-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00222-008-0110-5