Skip to main content
Log in

Energy convergence for singular limits of Zakharov type systems

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove existence and uniqueness of solutions to the Klein–Gordon–Zakharov system in the energy space H 1×L 2 on some time interval which is uniform with respect to two large parameters c and α. These two parameters correspond to the plasma frequency and the sound speed. In the simultaneous high-frequency and subsonic limit, we recover the nonlinear Schrödinger system at the limit. We are also able to say more when we take the limits separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Added, H., Added, S.: Equations of Langmuir turbulence and nonlinear Schrödinger equation: smoothness and approximation. J. Funct. Anal. 79(1), 183–210 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bechouche, P., Mauser, N., Selberg, S.: Nonrelativistic limit of Klein–Gordon–Maxwell to Schrödinger–Poisson. Am. J. Math. 126(1), 31–64 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellan, P.M.: Fundamentals of Plasmas Physics. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  4. Bergé, L., Bidégaray, B., Colin, T.: A perturbative analysis of the time-envelope approximation in strong Langmuir turbulence. Physica D 95(3-4), 351–379 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3(2), 107–156 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J., Colliander, J.: On wellposedness of the Zakharov system. Int. Math. Res. Not. 1996(11), 515–546 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cazenave, T., Weissler, F.: The Cauchy problem for the critical nonlinear Schrödinger equation in Hs. Nonlinear Anal. 14(10), 807–836 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colin, M., Colin, T.: On a quasilinear Zakharov system describing laser-plasma interactions. Differ. Integral Equ. 17(3-4), 297–330 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Dendy, R.-O.: Plasma Dynamics. Oxford University Press (1990)

  10. Galusinski, C.: A singular perturbation problem in a system of nonlinear Schrödinger equation occurring in Langmuir turbulence. M2AN, Math. Model. Numer. Anal. 34, 109–125 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J. Funct. Anal. 32(1), 1–32 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ginibre, J., Velo, G.: Time decay of finite energy solutions of the nonlinear Klein–Gordon and Schrödinger equations. Ann. Inst. Henri Poincaré, Phys. Théor. 43(4), 399–442 (1985)

    MathSciNet  MATH  Google Scholar 

  13. Ginibre, J., Tsutsumi, Y., Velo, G.: On the Cauchy problem for the Zakharov system. J. Funct. Anal. 151(2), 384–436 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kenig, C., Ponce, G., Vega, L.: On the Zakharov and Zakharov–Schulman systems. J. Funct. Anal. 127(1), 204–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Klainerman, S., Machedon, M.: Space-time estimates for null forms and the local existence theorem. Commun. Pure Appl. Math. 46(9), 1221–1268 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Koch, H., Tzvetkov, N.: On the local well-posedness of the Benjamin-Ono equation in H s(ℝ). Int. Math. Res. Not. 2003(26), 1449–1464 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lindblad, H.: Counterexamples to local existence for semi-linear wave equations. Am. J. Math. 118(1), 1–16 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Masmoudi, N., Nakanishi, K.: Uniqueness of finite energy solutions for Maxwell–Dirac and Maxwell–Klein–Gordon equations. Commun. Math. Phys. 243, 123–136 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Masmoudi, N., Nakanishi, K.: From the Klein–Gordon–Zakharov system to the nonlinear Schrödinger equation. J. Hyperbolic Differ. Equ. 2(4), 975–1008 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Masmoudi, N., Nakanishi, K.: Unconditional uniqueness for the Zakharov type systems. Preprint (2008)

  22. Nakamura, M., Wada, T.: Global existence and uniqueness of solutions to the Maxwell-Schrödinger equations. Commun. Math. Phys. 276(2), 315–339 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ozawa, T., Tsutaya, K., Tsutsumi, Y.: Well-posedness in energy space for the Cauchy problem of the Klein–Gordon–Zakharov equations with different propagation speeds in three space dimensions. Math. Ann. 313(1), 127–140 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ozawa, T., Tsutsumi, Y.: The nonlinear Schrödinger limit and the initial layer of the Zakharov equations. Differ. Integral Equ. 5(4), 721–745 (1992)

    MathSciNet  MATH  Google Scholar 

  25. Schochet, S., Weinstein, M.: The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence. Commun. Math. Phys. 106(4), 569–580 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sulem, C., Sulem, P.-L.: The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse. Appl. Math. Sci., vol. 139. Springer, New York (1999)

  27. Tataru, D.: The X s θ spaces and unique continuation for solutions to the semilinear wave equation. Commun. Partial Differ. Equations 21(5–6), 841–887 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Texier, B.: WKB asymptotics for the Euler–Maxwell equations. Asymptotic Anal. 42(3–4), 211–250 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Texier, B.: Derivation of the Zakharov equations. Arch. Ration. Mech. Anal. 184(1), 121–183 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zakharov, V.E.: Collapse of Langmuir waves. Sov. Phys. J. 35, 908–914 (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Masmoudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masmoudi, N., Nakanishi, K. Energy convergence for singular limits of Zakharov type systems. Invent. math. 172, 535–583 (2008). https://doi.org/10.1007/s00222-008-0110-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-008-0110-5

Keywords

Navigation