Skip to main content
Log in

Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove that stable ergodicity is C r open and dense among conservative partially hyperbolic diffeomorphisms with one-dimensional center bundle, for all r∈[2,∞].

The proof follows the Pugh–Shub program [29]: among conservative partially hyperbolic diffeomorphisms with one-dimensional center bundle, accessibility is C r open and dense, and essential accessibility implies ergodicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anosov, D.: Geodesic Flows on Closed Riemann Manifolds with Negative Curvature. Proc. Steklov Inst. Math., vol. 90. Am. Math. Soc. (1967)

  2. Anosov, D., Sinai, J.: Certain smooth ergodic systems. Usp. Mat. Nauk 22(5), 107–172 (1967) (137)

    MATH  MathSciNet  Google Scholar 

  3. Birkhoff, G.D.: Proof of the ergodic theorem. Proc. Natl. Acad. Sci. USA 17, 656–660 (1931)

    Article  MATH  Google Scholar 

  4. Birkhoff, G.D., Koopman, B.: Recent contributions to the ergodic theory. Proc. Natl. Acad. Sci. USA 18(3), 279–282 (1932)

    Article  MATH  Google Scholar 

  5. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lect. Notes Math., vol. 470. Springer, Berlin, New York (1975)

    MATH  Google Scholar 

  6. Brin, M.: On dynamical coherence. Ergodic Theory Dyn. Syst. 23, 395–401 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brin, M., Burago, D., Ivanov, S.: On partially hyperbolic diffeomorphisms of 3-manifolds with commutative fundamental group, In: Brin, M., Hasselblatt, B., Pesin, Y. (eds.): Modern Dynamical Systems and Application, pp. 307–312. Cambridge University Press, Cambridge (2004)

  8. Brin, M., Pesin, Y.: Partially hyperbolic dynamical systems. Math. USSR Izv. 8, 177–218 (1974)

    Article  Google Scholar 

  9. Burns, K., Pugh, C., Wilkinson, A.: Stable ergodicity of Anosov flows. Topology 39(1), 149–159 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Burns, K., Rodriguez, Hertz, F., Rodriguez Hertz, M.A., Talitskaya, A., Ures, R.: Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center. Preprint (submitted)

  11. Burns, K., Wilkinson, A.: Stable ergodicity of skew products. Ann. Sci. Éc. Norm. Supér., IV. Sér. 32, 859–889 (1999)

    MATH  MathSciNet  Google Scholar 

  12. Burns, K., Wilkinson, A.: Better center bunching. Preprint

  13. Burns, K., Wilkinson, A.: On the ergodicity of partially hyperbolic systems. Ann. Math. (submitted)

  14. Burns, K., Wilkinson, A.: A note on stable holonomy between centers. Preprint

  15. Didier, P.: Stability of accessibility. Ergodic Theory Dyn. Syst. 23, 1717–1731 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dolgopyat, D., Wilkinson, A.: Stable accessibility is C1 dense. In: de Melo, W., Viana, M., Yoccoz, J.C. (eds.): Geometric Methods in Dynamics (II). Astérisque, vol. 287, pp. 33–60. SMF, Paris (2003)

  17. Grayson, M., Pugh, C., Shub, M.: Stably ergodic diffeomorphisms. Ann. Math. 140, 295–329 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hirsch, M., Pugh, C., Shub, M.: Invariant manifolds. Bull. Am. Math. Soc., New Ser. 76, 1015–1019 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hopf, E.: Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung. Ber. Verh. Sächs. Akad. Wiss. Leipzig 91, 261–304 (1939)

    MathSciNet  Google Scholar 

  20. Katok, A., Kononenko, A.: Cocycles’ stability for partially hyperbolic systems. Math. Res. Lett. 3, 191–210 (1996)

    MATH  MathSciNet  Google Scholar 

  21. Kolmogorov, A.: On the conservation of conditionally periodic motions under small perturbations of the Hamiltonian. Dokl. Akad. Nauk SSSR 98, 527–530 (1954)

    MATH  MathSciNet  Google Scholar 

  22. Mañé, R.: Contributions to the stability conjecture. Topology 4, 383–396 (1978)

    Article  Google Scholar 

  23. von Neumann, J.: Proof of the quasi-ergodic hypothesis. Proc. Natl. Acad. Sci. USA 18, 93–100 (1932)

    Article  Google Scholar 

  24. Nitica, V., Török, A.: An open dense set of stably ergodic diffeomorphisms in a neighborhood of a non-ergodic one. Topology 40, 259–278 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pesin, Y.: Geodesic flows on closed Riemannian manifolds without focal points. Math. USSR Izv. 40, 1195–1228 (1977)

    Article  Google Scholar 

  26. Pugh, C., Shub, M.: Ergodicity of Anosov actions. Invent. Math. 15, 1–23 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  27. Pugh, C., Shub, M.: Stable ergodicity and partial hyperbolicity. In: Leddrappier, F., Lewowicz, J., Newhouse, S. (eds.), Proceedings of the 1st International Conference on Dynamical Systems, Montevideo, Uruguay, 1995 – A tribute to Ricardo Mañé. Res. Notes Math. Ser., vol. 362, pp. 182–187. Longman Pitman, Harlow (1996)

  28. Pugh, C., Shub, M.: Stably ergodic dynamical systems and partial hyperbolicity. J. Complexity 13(1), 125–179 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. Pugh, C., Shub, M.: Stable ergodicity and julienne quasiconformality. J. Egypt. Math. Soc. 2, 1–52 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Pugh, C., Shub, M.: Stable ergodicity (with an appendix of A. Starkov). Bull. Am. Math. Soc., New Ser. 41, 1–41 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Pugh, C., Shub, M., Wilkinson, A.: Partial differentiability of invariant splittings. J. Stat. Phys. 144, 891–921 (2004)

    Article  MathSciNet  Google Scholar 

  32. Rodriguez Hertz, F.: Stable ergodicity of certain linear automorphisms of the torus. Ann. Math. 162(1), 65–107 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Sacksteder, R.: Strongly mixing transformations. In: Global Analysis. Proc. Sympos. Pure Math. (Berkeley, 1968), vol. XIV, pp. 245–252. Am. Math. Soc., Providence, RI (1970)

  34. Shub, M., Wilkinson, A.: Stably ergodic approximation: two examples. Ergodic Theory Dyn. Syst. 20(3), 875–893 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  35. Tahzibi, A.: Stably ergodic diffeomorphisms which are not partially hyperbolic. Isr. J. Math. 142, 315–344 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wilkinson, A.: Stable ergodicity of the time-one map of a geodesic flow. Ergodic Theory Dyn. Syst. 18, 1545–1587 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rodriguez Hertz.

Additional information

Mathematics Subject Classification (2000)

Primary: 37D30, Secondary: 37A25

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez Hertz, F., Rodriguez Hertz, M. & Ures, R. Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle . Invent. math. 172, 353–381 (2008). https://doi.org/10.1007/s00222-007-0100-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-007-0100-z

Keywords

Navigation