Skip to main content
Log in

Sur les exposants de Lyapounov des applications méromorphes

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let f be a dominating meromorphic self-map of a compact Kähler manifold. We give an inequality for the Lyapounov exponents of some ergodic measures of f using the metric entropy and the dynamical degrees of f. We deduce the hyperbolicity of some measures.

Résumé

Soit f une application méromorphe dominante d’une variété Kählérienne compacte. Nous donnons une inégalité pour les exposants de Lyapounov d’une classe de mesures ergodiques de f en utilisant l’entropie métrique et les degrés dynamiques de f. Nous en déduisons l’hyperbolicité de certaines mesures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Références

  1. Arnold, L.: Random Dynamical Systems. Springer Monographs in Mathematics. Springer, Berlin (1998)

    Google Scholar 

  2. Briend, J.-Y., Duval, J.: Exposants de Liapounoff et distribution des points périodiques d’un endomorphisme de ℂℙk. Acta Math. 182, 143–157 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Briend, J.-Y., Duval, J.: Deux caractérisations de la mesure d’équilibre d’un endomorphisme de ℙk(ℂ). Publ. Math., Inst. Hautes Étud. Sci. 93, 145–159 (2001)

    MATH  MathSciNet  Google Scholar 

  4. Brin, M., Katok, A.: On local entropy. In: Geometric Dynamics. Lect. Notes Math., vol. 1007, pp. 30–38. Springer, Berlin (1983)

    Chapter  Google Scholar 

  5. Buzzi, J.: Entropy, volume growth and Lyapunov exponents. Preprint (1996)

  6. Dinh, T.-C., Dupont, C.: Dimension de la mesure d’équilibre d’applications méromorphes. J. Geom. Anal. 14, 613–627 (2004)

    MATH  MathSciNet  Google Scholar 

  7. Dinh, T.-C., Sibony, N.: Regularization of currents and entropy. Ann. Sci. Éc. Norm. Supér., IV. Sér. 37, 959–971 (2004)

    MATH  MathSciNet  Google Scholar 

  8. Dinh, T.-C., Sibony, N.: Une borne supérieure pour l’entropie topologique d’une application rationnelle. Ann. Math. 161, 1637–1644 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dinh, T.-C., Sibony, N.: Dynamics of regular birational maps in ℙk. J. Funct. Anal. 222, 202–216 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dinh, T.-C., Sibony, N.: Green currents for holomorphic automorphisms of compact Kähler manifolds. J. Am. Math. Soc. 18, 291–312 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Federer, H.: Geometric Measure Theory. Springer, New York (1969)

    MATH  Google Scholar 

  12. Fornaess, J.E., Sibony, N.: Complex dynamics in higher dimensions. In: Complex Potential Theory (Montreal, PQ, 1993). NATO Adv. Sci. Inst. Ser., Ser. C: Math. Phys. Sci., vol. 439, pp. 131–186. Kluwer, Dordrecht (1994)

    Google Scholar 

  13. Fornaess, J.E., Sibony, N.: Complex dynamics in higher dimension I. Astérisque 222, 201–231 (1994)

    MathSciNet  Google Scholar 

  14. Gromov, M.: Convex sets and Kähler manifolds. In: Advances in Differential Geometry and Topology, pp. 1–38. World Sci. Publ., Teaneck, NJ (1990)

  15. Gromov, M.: On the entropy of holomorphic maps. Enseign. Math. 49, 217–235 (2003)

    MATH  MathSciNet  Google Scholar 

  16. Guedj, V.: Ergodic properties of rational mappings with large topological degree. Ann. Math. 161, 1589–1607 (2005)

    MATH  MathSciNet  Google Scholar 

  17. Guedj, V.: Entropie topologique des applications méromorphes. Ergodic Theory Dyn. Syst. 25, 1847–1855 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical systems. In: Encycl. Math. Appl., vol. 54. Cambridge University Press, Cambridge (1995)

  19. Lelong, P.: Propriétés métriques des variétés analytiques complexes définies par une équation. Ann. Sci. Éc. Norm. Supér., IV. Sér. 67, 393–419 (1950)

    MATH  MathSciNet  Google Scholar 

  20. Lojasiewicz, S.: Introduction to Complex Analytic Geometry. Birkhäuser, Basel (1991)

    MATH  Google Scholar 

  21. Newhouse, S.E.: Entropy and volume. Ergodic Theory Dyn. Syst. 8, 283–299 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ruelle, D.: An inequality for the entropy of differentiable maps. Bol. Soc. Bras. Mat. 9, 83–87 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  23. Russakovskii, A., Shiffman, B.: Value distribution for sequences of rational mappings and complex dynamics. Indiana Univ. Math. J. 46, 897–932 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Skoda, H.: Prolongement des courants positifs, fermés de masse finie. Invent. Math. 66, 361–376 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry de Thélin.

Additional information

Mathematics Subject Classification (2000)

37Fxx, 32H50, 58F15

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Thélin, H. Sur les exposants de Lyapounov des applications méromorphes. Invent. math. 172, 89–116 (2008). https://doi.org/10.1007/s00222-007-0095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-007-0095-5

Navigation