Skip to main content
Log in

Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We use a characterization of the fractional Laplacian as a Dirichlet to Neumann operator for an appropriate differential equation to study its obstacle problem. We write an equivalent characterization as a thin obstacle problem. In this way we are able to apply local type arguments to obtain sharp regularity estimates for the solution and study the regularity of the free boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Athanasopoulos, I., Caffarelli, L.A.: Optimal regularity of lower dimensional obstacle problems. Zap. Nauchn. Semin. POMI 310 (Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34]), 49–66, 226 (2004)

  2. Athanasopoulos, I., Caffarelli, L.A., Salsa, S.: The structure of the free boundary for lower dimesional obstacle problems. To appear in Am. J. Math. (2007)

  3. Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: Statistical mechanics, models and physical applications. Phys. Rep. 195(4–5), 127–293 (1990)

    Article  MathSciNet  Google Scholar 

  4. Caffarelli, L.A.: The obstacle problem revisited. J. Fourier Anal. Appl. 4(4–5), 383–402 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations. Colloq. Publ., Am. Math. Soc., vol. 43. Am. Math. Soc., Providence, RI (1995)

    MATH  Google Scholar 

  6. Caffarelli, L., Salsa, S.: A Geometric Approach to Free Boundary Problems. Grad. Stud. Math., vol. 68. Am. Math. Soc., Providence, RI (2005)

    MATH  Google Scholar 

  7. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equations 32(8), 1245–1260 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Caffarelli, L., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Preprint

  9. Constantin, P.: Euler equations, Navier-Stokes equations and turbulence. In: Mathematical Foundation of Turbulent Viscous Flows. Lect. Notes Math., vol. 1871, pp. 1–43. Springer, Berlin (2006)

    Chapter  Google Scholar 

  10. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman Hall/CRC Financ. Math. Ser. Chapman & Hall/CRC, Boca Raton, FL (2004)

    Google Scholar 

  11. Fabes, E.B., Kenig, C.E., Jerison, D.: Boundary behavior of solutions to degenerate elliptic equations. In: Conference on Harmonic Analysis in Honor of Antoni Zygmund, vol. I, II (Chicago, Ill., 1981), Wadsworth Math. Ser., pp. 577–589. Wadsworth, Belmont, CA (1983)

  12. Fabes, E.B., Kenig, C.E., Serapioni, R.P.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equations 7(1), 77–116 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Garofalo, N.: Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension. J. Differ. Equations 104(1), 117–146 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kilpeläinen, T.: Smooth approximation in weighted Sobolev spaces. Commentat. Math. Univ. Carol. 38(1), 29–35 (1997)

    MATH  Google Scholar 

  15. Milakis, E., Silvestre, L.E.: Regularity for fully nonlinear elliptic equations with Neumann boundary data. Commun. Partial Differ. Equations 31(7–9), 1227–1252 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Silvestre, L.: The regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Caffarelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caffarelli, L., Salsa, S. & Silvestre, L. Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian . Invent. math. 171, 425–461 (2008). https://doi.org/10.1007/s00222-007-0086-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-007-0086-6

Keywords

Navigation